Advertisement
Research Article| Volume 198, 110619, April 2023

Download started.

Ok

Pre-pregnancy body mass index and risk of maternal or infant complications with gestational diabetes mellitus as a mediator: A multicenter, longitudinal cohort study in China

      Highlights

      • Maternal Overweight/Obesity and risk of GHP, macrosomia andLGA were mediated by gestational diabetes mellitus.
      • Maternal underweight is associated with the LBW and SGA.
      • 21.0 kg/m2 maybe the appropriate tipping point pre-pregnancy BMI among Chinese women.

      Abstract

      Aims

      We explored the complex relationships between pre-pregnancy body mass index (pBMI) and maternal or infant complications and the mediating role of gestational diabetes mellitus (GDM) in these relationships.

      Methods

      Pregnant women from 24 hospitals in 15 different provinces of China were enrolled in 2017 and followed through 2018. Propensity score–based inverse probability of treatment weighting, logistic regression, restricted cubic spline models, and causal mediation analysis were utilized. In addition, the E-value method was used to evaluate unmeasured confounding factors.

      Results

      A total of 6174 pregnant women were finally included. Compared to women with a normal pBMI, obese women had a higher risk for gestational hypertension (odds ratio [OR] = 5.38, 95% confidence interval [CI]: 3.48–8.34), macrosomia (OR = 2.65, 95% CI: 1.83–3.84), and large for gestational age (OR = 2.05, 95% CI: 1.45–2.88); 4.73% (95% CI: 0.57%-8.88%), 4.61% (95% CI: 0.51%-9.74%), and 5.02% (95% CI: 0.13%-10.18%) of the associations, respectively, were mediated by GDM. Underweight women had a high risk for low birth weight (OR = 1.42, 95% CI: 1.15–2.08) and small for gestational age (OR = 1.62, 95% CI: 1.23–2.11). Dose–response analyses indicated that 21.0 kg/m2 may be the appropriate tipping point pBMI for risk for maternal or infant complications in Chinese women.

      Conclusion

      A high or low pBMI is associated with the risk for maternal or infant complications and partly mediated by GDM. A lower pBMI cutoff of 21 kg/m2 may be appropriate for risk for maternal or infant complications in pregnant Chinese women.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Diabetes Research and Clinical Practice
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Wang M.C.
        • Freaney P.M.
        • Perak A.M.
        • Greenland P.
        • Lloyd-Jones D.M.
        • Grobman W.A.
        • et al.
        Trends in prepregnancy obesity and association with adverse pregnancy outcomes in the United States, 2013 to 2018.
        J Am Heart Assoc. 2021; 10 (Epub 2021/08/26): e020717https://doi.org/10.1161/jaha.120.020717
        • Wang L.
        • Zhou B.
        • Zhao Z.
        • Yang L.
        • Zhang M.
        • Jiang Y.
        • et al.
        Body-mass index and obesity in urban and rural China: findings from consecutive nationally representative surveys during 2004–18.
        Lancet. 2021; 398 (Epub 2021/07/05): 53-63https://doi.org/10.1016/s0140-6736(21)00798-4
        • Lewandowska M.
        Maternal obesity and risk of low birth weight, fetal growth restriction, and macrosomia: multiple analyses.
        Nutrients. 2021; 13 (Epub 2021/05/01)https://doi.org/10.3390/nu13041213
        • Vats H.
        • Saxena R.
        • Sachdeva M.P.
        • Walia G.K.
        • Gupta V.
        Impact of maternal pre-pregnancy body mass index on maternal, fetal and neonatal adverse outcomes in the worldwide populations: A systematic review and meta-analysis.
        Obes Res Clin Pract. 2021; 15 (Epub 2021/11/17): 536-545https://doi.org/10.1016/j.orcp.2021.10.005
        • Han Z.
        • Mulla S.
        • Beyene J.
        • Liao G.
        • McDonald S.D.
        Maternal underweight and the risk of preterm birth and low birth weight: a systematic review and meta-analyses.
        Int J Epidemiol. 2011; 40 (Epub 2010/11/26): 65-101https://doi.org/10.1093/ije/dyq195
        • Li Z.
        • Kim R.
        • Vollmer S.
        • Subramanian S.V.
        Factors associated with child stunting, wasting, and underweight in 35 low- and middle-income countries.
        JAMA Netw Open. 2020; 3 (Epub 2020/04/23): e203386https://doi.org/10.1001/jamanetworkopen.2020.3386
        • Ahmed B.
        • Sultana R.
        • Greene M.W.
        Adipose tissue and insulin resistance in obese.
        Biomed Pharmacother. 2021; 137 (Epub 2021/02/10)https://doi.org/10.1016/j.biopha.2021.111315
        • Ohishi M.
        Hypertension with diabetes mellitus: physiology and pathology.
        Hypertens Res. 2018; 41 (Epub 2018/03/21): 389-393https://doi.org/10.1038/s41440-018-0034-4
        • Kc K.
        • Shakya S.
        • Zhang H.
        Gestational diabetes mellitus and macrosomia: a literature review.
        Ann Nutr Metab. 2015; 66 (Epub 2015/06/06): 14-20https://doi.org/10.1159/000371628
        • Lin X.
        • Aris I.M.
        • Tint M.T.
        • Soh S.E.
        • Godfrey K.M.
        • Yeo G.S.
        • et al.
        Ethnic differences in effects of maternal pre-pregnancy and pregnancy adiposity on offspring size and adiposity.
        J Clin Endocrinol Metab. 2015; 100 (Epub 2015/07/23): 3641-3650https://doi.org/10.1210/jc.2015-1728
        • Read S.H.
        • Rosella L.C.
        • Berger H.
        • Feig D.S.
        • Fleming K.
        • Ray J.G.
        • et al.
        BMI and risk of gestational diabetes among women of South Asian and Chinese ethnicity: a population-based study.
        Diabetologia. 2021; 64 (Epub 2021/01/25): 805-813https://doi.org/10.1007/s00125-020-05356-5
        • Xie D.
        • Yang W.
        • Wang A.
        • Xiong L.
        • Kong F.
        • Liu Z.
        • et al.
        Effects of pre-pregnancy body mass index on pregnancy and perinatal outcomes in women based on a retrospective cohort.
        Sci Rep. 2021; 11 (Epub 2021/10/08): 19863https://doi.org/10.1038/s41598-021-98892-y
        • Yang W.
        • Liu J.
        • Li J.
        • Liu J.
        • Liu H.
        • Wang Y.
        • et al.
        Interactive effects of prepregnancy overweight and gestational diabetes on macrosomia and large for gestational age: A population-based prospective cohort in Tianjin.
        China. Diabetes Res Clin Pract. 2019; 154 (Epub 2019/07/05): 82-89https://doi.org/10.1016/j.diabres.2019.06.014
      1. National Health Commission of the People’s Republic of China: Criteria of Weight for Adults. 2013. Available from: http://www.nhc.gov.cn/ewebeditor/uploadfile/2013/08/20130808135715967.

        • Metzger B.E.
        • Gabbe S.G.
        • Persson B.
        • Buchanan T.A.
        • Catalano P.A.
        • Damm P.
        • et al.
        International association of diabetes and pregnancy study groups recommendations on the diagnosis and classification of hyperglycemia in pregnancy.
        Diabetes Care. 2010; 33 (Epub 2010/03/02): 676-682https://doi.org/10.2337/dc09-1848
        • Brown M.A.
        • Magee L.A.
        • Kenny L.C.
        • Karumanchi S.A.
        • McCarthy F.P.
        • Saito S.
        • et al.
        Hypertensive disorders of pregnancy: ISSHP classification, diagnosis, and management recommendations for international practice.
        Hypertension. 2018; 72 (Epub 2018/06/15): 24-43https://doi.org/10.1161/hypertensionaha.117.10803
        • Keag O.E.
        • Norman J.E.
        • Stock S.J.
        Long-term risks and benefits associated with cesarean delivery for mother, baby, and subsequent pregnancies: Systematic review and meta-analysis.
        PLoS Med. 2018; 15 (Epub 2018/01/24): e1002494https://doi.org/10.1371/journal.pmed.1002494
        • Shen L.
        • Wang J.
        • Duan Y.
        • Yang Z.
        Prevalence of low birth weight and macrosomia estimates based on heaping adjustment method in China.
        Sci Rep. 2021; 11 (Epub 2021/07/24): 15016https://doi.org/10.1038/s41598-021-94375-2
        • Zhu L.
        • Zhang R.
        • Zhang S.L.
        • Shi W.J.
        • Yan W.L.
        • Wang X.L.
        • et al.
        Chinese neonatal birth weight curve for different gestational age.
        Chin J Pediatr. 2015; 53: 97-103
        • Arafa A.
        • Dong J.Y.
        Maternal height and risk of gestational diabetes: a systematic review and meta-analysis.
        Acta Diabetol. 2019; 56 (Epub 2019/05/22): 723-728https://doi.org/10.1007/s00592-019-01368-9
        • Attali E.
        • Yogev Y.
        The impact of advanced maternal age on pregnancy outcome.
        Best Pract Res Clin Obstet Gynaecol. 2021; 70 (Epub 2020/08/11): 2-9https://doi.org/10.1016/j.bpobgyn.2020.06.006
        • Harris H.R.
        • Willett W.C.
        • Michels K.B.
        Parental smoking during pregnancy and risk of overweight and obesity in the daughter.
        Int J Obes (Lond). 2013; 37 (Epub 2013/06/06): 1356-1363https://doi.org/10.1038/ijo.2013.101
        • Lee Y.
        • Magnus P.
        Maternal and paternal height and the risk of preeclampsia.
        Hypertension. 2018; 71 (Epub 2018/02/22): 666-670https://doi.org/10.1161/hypertensionaha.117.10477
        • Martín-Estal I.
        • Castilla-Cortázar I.
        • Castorena-Torres F.
        The placenta as a target for alcohol during pregnancy: the close relation with IGFs signaling pathway.
        Rev Physiol Biochem Pharmacol. 2021; 180 (Epub 2021/06/24): 119-153https://doi.org/10.1007/112_2021_58
        • Reece S.
        • Morgan C.
        • Parascandola M.
        • Siddiqi K.
        Secondhand smoke exposure during pregnancy: a cross-sectional analysis of data from Demographic and Health Survey from 30 low-income and middle-income countries.
        Tob Control. 2019; 28 (Epub 2018/07/22): 420-426https://doi.org/10.1136/tobaccocontrol-2018-054288
        • Li G.
        • Xing Y.
        • Wang G.
        • Zhang J.
        • Wu Q.
        • Ni W.
        • et al.
        Differential effect of pre-pregnancy low BMI on fetal macrosomia: a population-based cohort study.
        BMC Med. 2021; 19 (Epub 2021/08/05): 175https://doi.org/10.1186/s12916-021-02046-w
      2. Bonnie E. Shook-Sa, Hudgens MG. Power and Sample Size for Marginal Structural Models 2020. Available from: https://arxiv.org/abs/2003.05979.

        • van der Wal W.M.
        • Geskus R.B.
        ipw: An R package for inverse probability weighting.
        J Stat Softw. 2011; 43: 1-23https://doi.org/10.18637/jss.v043.i13
        • Hayes A.F.
        • Rockwood N.J.
        Regression-based statistical mediation and moderation analysis in clinical research: Observations, recommendations, and implementation.
        Behav Res Ther. 2017; 98 (Epub 2016/11/21): 39-57https://doi.org/10.1016/j.brat.2016.11.001
        • Desquilbet L.
        • Mariotti F.
        Dose-response analyses using restricted cubic spline functions in public health research.
        Stat Med. 2010; 29 (Epub 2010/01/21): 1037-1057https://doi.org/10.1002/sim.3841
        • VanderWeele T.J.
        • Ding P.
        Sensitivity analysis in observational research: introducing the E-value.
        Ann Intern Med. 2017; 167 (Epub 2017/07/12): 268-274https://doi.org/10.7326/m16-2607
        • Chu S.Y.
        • Callaghan W.M.
        • Kim S.Y.
        • Schmid C.H.
        • Lau J.
        • England L.J.
        • et al.
        Maternal obesity and risk of gestational diabetes mellitus.
        Diabetes Care. 2007; 30 (Epub 2007/04/10): 2070-2076https://doi.org/10.2337/dc06-2559a
        • Santos S.
        • Voerman E.
        • Amiano P.
        • Barros H.
        • Beilin L.J.
        • Bergström A.
        • et al.
        Impact of maternal body mass index and gestational weight gain on pregnancy complications: an individual participant data meta-analysis of European, North American and Australian cohorts.
        Bjog. 2019; 126 (Epub 2019/02/21): 984-995https://doi.org/10.1111/1471-0528.15661
        • Mohammadi M.
        • Maroufizadeh S.
        • Omani-Samani R.
        • Almasi-Hashiani A.
        • Amini P.
        The effect of prepregnancy body mass index on birth weight, preterm birth, cesarean section, and preeclampsia in pregnant women.
        J Matern Fetal Neonatal Med. 2019; 32 (Epub 2018/05/18): 3818-3823https://doi.org/10.1080/14767058.2018.1473366
        • Zhang J.
        • Bricker L.
        • Wray S.
        • Quenby S.
        Poor uterine contractility in obese women.
        Bjog. 2007; 114 (Epub 2007/01/31): 343-348https://doi.org/10.1111/j.1471-0528.2006.01233.x
        • Kelly A.C.
        • Powell T.L.
        • Jansson T.
        Placental function in maternal obesity.
        Clin Sci (Lond). 2020; 134 (Epub 2020/04/22): 961-984https://doi.org/10.1042/cs20190266
        • Lawlor D.A.
        The Society for Social Medicine John Pemberton Lecture 2011. Developmental overnutrition–an old hypothesis with new importance?.
        Int J Epidemiol. 2013; 42 (Epub 2013/03/20): 7-29https://doi.org/10.1093/ije/dys209
        • Vaughan O.R.
        • Rosario F.J.
        • Powell T.L.
        • Jansson T.
        Regulation of placental amino acid transport and fetal growth.
        Prog Mol Biol Transl Sci. 2017; 145 (Epub 2017/01/24): 217-251https://doi.org/10.1016/bs.pmbts.2016.12.008
        • Bogaerts A.
        • Ameye L.
        • Martens E.
        • Devlieger R.
        Weight loss in obese pregnant women and risk for adverse perinatal outcomes.
        Obstet Gynecol. 2015; 125 (Epub 2015/03/03): 566-575https://doi.org/10.1097/aog.0000000000000677
        • Chen Y.H.
        • Li L.
        • Chen W.
        • Liu Z.B.
        • Ma L.
        • Gao X.X.
        • et al.
        Pre-pregnancy underweight and obesity are positively associated with small-for-gestational-age infants in a Chinese population.
        Sci Rep. 2019; 9 (Epub 2019/10/31): 15544https://doi.org/10.1038/s41598-019-52018-7
        • Wang Y.
        • Ma H.
        • Feng Y.
        • Zhan Y.
        • Wu S.
        • Cai S.
        • et al.
        Association among pre-pregnancy body mass index, gestational weight gain and neonatal birth weight: a prospective cohort study in China.
        BMC Pregnancy Childbirth. 2020; 20 (Epub 2020/11/14): 690https://doi.org/10.1186/s12884-020-03323-x
        • Kondracki A.J.
        • Valente M.J.
        • Ibrahimou B.
        • Bursac Z.
        Risk of large for gestational age births at early, full and late term in relation to pre-pregnancy body mass index: Mediation by gestational diabetes status.
        Paediatr Perinat Epidemiol. 2021; (Epub 2021/11/1)https://doi.org/10.1111/ppe.12809
        • Song X.
        • Shu J.
        • Zhang S.
        • Chen L.
        • Diao J.
        • Li J.
        • et al.
        Pre-pregnancy body mass index and risk of Macrosomia and large for gestational age births with gestational diabetes mellitus as a mediator: A prospective cohort study in Central China.
        Nutrients. 2022; 14 (Epub 2022/03/11)https://doi.org/10.3390/nu14051072
        • Hu H.
        • Feng P.
        • Yu Q.
        • Zhu W.
        • Xu H.
        • Wu D.
        • et al.
        The mediating role of gestational diabetes mellitus in the associations of maternal prepregnancy body mass index with neonatal birth weight.
        J Diabetes. 2022; 14 (Epub 2021/10/21): 26-33https://doi.org/10.1111/1753-0407.13233
        • Ben-Haroush A.
        • Hadar E.
        • Chen R.
        • Hod M.
        • Yogev Y.
        Maternal obesity is a major risk factor for large-for-gestational-infants in pregnancies complicated by gestational diabetes.
        Arch Gynecol Obstet. 2009; 279 (Epub 2008/09/02): 539-543https://doi.org/10.1007/s00404-008-0767-4