Advertisement
Research Article| Volume 197, 110578, March 2023

Download started.

Ok

Circulating metabolomic and lipidomic changes in subjects with new-onset type 1 diabetes after optimization of glycemic control

  • Author Footnotes
    1 Josep Julve and Idoia Genua contributed equally to this study.
    Josep Julve
    Footnotes
    1 Josep Julve and Idoia Genua contributed equally to this study.
    Affiliations
    Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), 08041 Barcelona, Spain

    CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Barcelona, Spain
    Search for articles by this author
  • Author Footnotes
    1 Josep Julve and Idoia Genua contributed equally to this study.
    Idoia Genua
    Footnotes
    1 Josep Julve and Idoia Genua contributed equally to this study.
    Affiliations
    Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), 08041 Barcelona, Spain

    Department of Endocrinology & Nutrition, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain

    Department of Medicine, Autonomous University of Barcelona, Barcelona, Spain
    Search for articles by this author
  • Paola Quifer-Rada
    Affiliations
    CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Barcelona, Spain

    LactApp Women’s Health, Barcelona, Spain
    Search for articles by this author
  • Óscar Yanes
    Affiliations
    CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Barcelona, Spain

    Universitat Rovira i Virgili, Department of Electronic Engineering & IISPV, Tarragona, Spain
    Search for articles by this author
  • Maria Barranco-Altirriba
    Affiliations
    Department of Endocrinology & Nutrition, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain

    B2SLab, Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial, Universitat Politècnica de Catalunya, Barcelona, Spain

    Networking Biomedical Research Centre in the Subject Area of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain

    Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
    Search for articles by this author
  • Marta Hernández
    Affiliations
    Department of Endocrinology & Nutrition, University Hospital Arnau de Vilanova, Lleida, Spain

    Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), University of Lleida, 25198 Lleida, Spain
    Search for articles by this author
  • Alexandra Junza
    Affiliations
    CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Barcelona, Spain

    Universitat Rovira i Virgili, Department of Electronic Engineering & IISPV, Tarragona, Spain
    Search for articles by this author
  • Jordi Capellades
    Affiliations
    Universitat Rovira i Virgili, Department of Electronic Engineering & IISPV, Tarragona, Spain
    Search for articles by this author
  • Minerva Granado-Casas
    Affiliations
    CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Barcelona, Spain

    Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), University of Lleida, 25198 Lleida, Spain
    Search for articles by this author
  • Núria Alonso
    Affiliations
    CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Barcelona, Spain

    Department of Medicine, Autonomous University of Barcelona, Barcelona, Spain

    Department of Endocrinology & Nutrition, University Hospital Germans Trias i Pujol, 08916 Badalona, Spain
    Search for articles by this author
  • Esmeralda Castelblanco
    Correspondence
    Corresponding authors at: C/ Sant Quintí, 89, 08041 Barcelona, Spain (D. Mauricio). 660 S. Euclid Ave., St. Louis, MO 63110, USA (E. Castelblanco).
    Affiliations
    Endocrinology, Metabolism and Lipid Research Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA

    Unitat de Suport a la Recerca Barcelona, Institut Universitari d’Investigació en Atenció Primària Jordi Gol i Gurina (IDIAP Jordi Gol), 08007 Barcelona, Spain
    Search for articles by this author
  • Didac Mauricio
    Correspondence
    Corresponding authors at: C/ Sant Quintí, 89, 08041 Barcelona, Spain (D. Mauricio). 660 S. Euclid Ave., St. Louis, MO 63110, USA (E. Castelblanco).
    Affiliations
    Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), 08041 Barcelona, Spain

    CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Barcelona, Spain

    Department of Endocrinology & Nutrition, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain

    Unitat de Suport a la Recerca Barcelona, Institut Universitari d’Investigació en Atenció Primària Jordi Gol i Gurina (IDIAP Jordi Gol), 08007 Barcelona, Spain

    Department of Medicine, University of Vic - Central University of Catalonia, Vic, Spain
    Search for articles by this author
  • Author Footnotes
    1 Josep Julve and Idoia Genua contributed equally to this study.
Published:February 16, 2023DOI:https://doi.org/10.1016/j.diabres.2023.110578

      Abstract

      Aims

      To uncover novel candidate metabolomic and lipidomic biomarkers in newly-diagnosed type 1 diabetes (T1DM) after achieving optimal glucose control.

      Methods

      Comprehensive lipidomic and metabolomic analysis was performed in serum of 12 adults with T1DM at onset and after achieving optimal glycemic control (HbA1c < 7 %) (after 2–6 months).

      Results

      After intensive therapy, subjects (mean age 25.2 years, 58.3 % men) showed decreases in blood glucose (p < 0.001), HbA1c [11.5 % (9.2–13.4) to 6.2 % (5.2 – 6.7); p < 0.001] and changes in 51 identified lipids. Among these changes, we found that triglycerides (TG) containing medium chain fatty acids (TG45:0, TG47:1), sphingomyelins (SM) (SM(d18:2/20:0), SM42:4)), and phosphatidylcholines (PC) (PC(O-26:2), PC(O-30:0), PC(O-32:0), PC(O-42:6), PC(O-44:5), PC(O-38:3), PC(O-33:0), PC(O-46:8), PC(O-44:6), PC(O-40:3), PC(O-42:4), PC(O-46:7), PC(O-46:6), PC(O-44:5), PC(O-42:3), PC(O-44:4)) decreased; whereas PC(35:1), PC(37:1) and TG containing longer chain fatty acids (TG(52:1), TG(55:7), TG(51:2), TG(53:3), TG52:2), TG(53:2), TG(57:3), TG(61:3), TG(61:2) increased. Further, dihydro O-acylceramide (18:1/18:0/16:0), diacylglycerophosphoethanolamine (PE(34:1)), diacylglycerophosphoinositol (PI(38:6), and dihydrosphingomyelins (dihydroSM(36:0), dihydroSM(40:0), dihydroSM(41:0), dihydroSM(42:0)) increased. Uric acid, mannitol, and mannitol-1-acetate levels also increased.

      Conclusions

      Our data uncovered potential favorable changes in the metabolism of glycerophospholipids, glycerolipids, and sphingolipids in new-onset T1DM after achieving optimal glycemic control. Further research on their potential role in developing diabetes-related complications is needed.

      Keywords

      Abbreviations:

      BMI (body mass index), CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration), CVD (cardiovascular disease), DBP (diastolic blood pressure), eGFR (estimated glomerular filtration rate), FCs (fold-changes), HbA1c (glycosylated hemoglobin), HDL-C (high-density lipoprotein cholesterol), LDL-C (low-density lipoprotein cholesterol), PC (phosphatidylcholines), SBP (systolic blood pressure), SM (sphingomyelin), T1DM (type 1 diabetes mellitus), TG (triglycerides)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Diabetes Research and Clinical Practice
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Kerner W.
        • Brückel J.
        Definition, Classification and Diagnosis of Diabetes Mellitus.
        Exp Clin Endocrinol Diabetes. 2014; 122: 384-386https://doi.org/10.1055/s-0034-1366278
        • Perkins B.A.
        • Sherr J.L.
        • Mathieu C.
        Type 1 diabetes glycemic management: Insulin therapy, glucose monitoring, and automation.
        Science. 1979; 2021: 522-527https://doi.org/10.1126/science.abg4502
        • Watkins R.A.
        • Evans-Molina C.
        • Blum J.S.
        • DiMeglio L.A.
        Established and emerging biomarkers for the prediction of type 1 diabetes: a systematic review.
        Transl Res. 2014; 164: 110-121https://doi.org/10.1016/j.trsl.2014.02.004
        • Wang M.
        • Wang C.
        • Han R.H.
        • Han X.
        Novel advances in shotgun lipidomics for biology and medicine.
        Prog Lipid Res. 2016; 61: 83-108https://doi.org/10.1016/j.plipres.2015.12.002
        • Suvitaival T.
        Lipidomic Abnormalities During the Pathogenesis of Type 1 Diabetes: a Quantitative Review.
        Curr Diab Rep. 2020; 20: 46https://doi.org/10.1007/s11892-020-01326-8
        • Ritchie R.H.
        • Zerenturk E.J.
        • Prakoso D.
        • Calkin A.C.
        Lipid metabolism and its implications for type 1 diabetes-associated cardiomyopathy.
        J Mol Endocrinol. 2017; 58: R225-R240https://doi.org/10.1530/JME-16-0249
        • Eid S.
        • Sas K.M.
        • Abcouwer S.F.
        • Feldman E.L.
        • Gardner T.W.
        • Pennathur S.
        • et al.
        New insights into the mechanisms of diabetic complications: role of lipids and lipid metabolism.
        Diabetologia. 2019; 62: 1539-1549https://doi.org/10.1007/s00125-019-4959-1
        • Dashti M.
        • Kulik W.
        • Hoek F.
        • Veerman E.C.
        • Peppelenbosch M.P.
        • Rezaee F.
        A Phospholipidomic Analysis of All Defined Human Plasma Lipoproteins.
        Sci Rep. 2011; 1: 139https://doi.org/10.1038/srep00139
        • Castelblanco E.
        • Hernández M.
        • Ortega E.
        • Amigó N.
        • Real J.
        • Granado-Casas M.
        • et al.
        Outstanding improvement of the advanced lipoprotein profile in subjects with new-onset type 1 diabetes mellitus after achieving optimal glycemic control.
        Diabetes Res Clin Pract. 2021; 182https://doi.org/10.1016/j.diabres.2021.109145
        • Levey A.S.
        • Stevens L.A.
        • Schmid C.H.
        • Zhang Y.L.
        • Castro A.F.
        • Feldman H.I.
        • et al.
        A new equation to estimate glomerular filtration rate.
        Ann Intern Med. 2009; 150: 604-612https://doi.org/10.7326/0003-4819-150-9-200905050-00006
        • Chambers M.C.
        • Maclean B.
        • Burke R.
        • Amodei D.
        • Ruderman D.L.
        • Neumann S.
        • et al.
        A cross-platform toolkit for mass spectrometry and proteomics.
        Nat Biotechnol. 2012; 30: 918-920https://doi.org/10.1038/nbt.2377
        • Libiseller G.
        • Dvorzak M.
        • Kleb U.
        • Gander E.
        • Eisenberg T.
        • Madeo F.
        • et al.
        IPO: a tool for automated optimization of XCMS parameters.
        BMC Bioinf. 2015; 16: 118https://doi.org/10.1186/s12859-015-0562-8
        • Smith C.A.
        • Want E.J.
        • O’Maille G.
        • Abagyan R.
        • Siuzdak G.
        XCMS: Processing Mass Spectrometry Data for Metabolite Profiling Using Nonlinear Peak Alignment, Matching, and Identification.
        Anal Chem. 2006; 78: 779-787https://doi.org/10.1021/ac051437y
        • Dieterle F.
        • Ross A.
        • Schlotterbeck G.
        • Senn H.
        Probabilistic Quotient Normalization as Robust Method to Account for Dilution of Complex Biological Mixtures. Application in 1 H NMR Metabonomics.
        Anal Chem. 2006; 78: 4281-4290https://doi.org/10.1021/ac051632c
        • Nahmias A.
        • Stahel P.
        • Xiao C.
        • Lewis G.F.
        Glycemia and Atherosclerotic Cardiovascular Disease: Exploring the Gap Between Risk Marker and Risk Factor.
        Front Cardiovasc Med. 2020; 7https://doi.org/10.3389/fcvm.2020.00100
        • Shin D.H.
        • Paulauskis J.D.
        • Moustaïd N.
        • Sul H.S.
        Transcriptional regulation of p90 with sequence homology to Escherichia coli glycerol-3-phosphate acyltransferase.
        J Biol Chem. 1991; 266: 23834-23839
        • Coleman R.A.
        • Lewin T.M.
        • Muoio D.M.
        Physiological and nutritional regulation of enzymes of triacylglycerol synthesis.
        Annu Rev Nutr. 2000; 20: 77-103https://doi.org/10.1146/annurev.nutr.20.1.77
        • Lewin T.M.
        • Granger D.A.
        • Kim J.H.
        • Coleman R.A.
        Regulation of mitochondrial sn-glycerol-3-phosphate acyltransferase activity: response to feeding status is unique in various rat tissues and is discordant with protein expression.
        Arch Biochem Biophys. 2001; 396: 119-127https://doi.org/10.1006/abbi.2001.2604
        • Hammond L.E.
        • Gallagher P.A.
        • Wang S.
        • Hiller S.
        • Kluckman K.D.
        • Posey-Marcos E.L.
        • et al.
        Mitochondrial glycerol-3-phosphate acyltransferase-deficient mice have reduced weight and liver triacylglycerol content and altered glycerolipid fatty acid composition.
        Mol Cell Biol. 2002; 22: 8204-8214https://doi.org/10.1128/MCB.22.23.8204-8214.2002
        • Horton J.D.
        • Shimomura I.
        Sterol regulatory element-binding proteins: activators of cholesterol and fatty acid biosynthesis.
        Curr Opin Lipidol. 1999; 10: 143-150https://doi.org/10.1097/00041433-199904000-00008
        • Azzout-Marniche D.
        • Bécard D.
        • Guichard C.
        • Foretz M.
        • Ferré P.
        • Foufelle F.
        Insulin effects on sterol regulatory-element-binding protein-1c (SREBP-1c) transcriptional activity in rat hepatocytes.
        Biochem J. 2000; 350: 389-393
        • Dif N.
        • Euthine V.
        • Gonnet E.
        • Laville M.
        • Vidal H.
        • Lefai E.
        Insulin activates human sterol-regulatory-element-binding protein-1c (SREBP-1c) promoter through SRE motifs.
        Biochem J. 2006; 400: 179-188https://doi.org/10.1042/BJ20060499
        • Bach A.C.
        • Babayan V.K.
        Medium-chain triglycerides: an update.
        Am J Clin Nutr. 1982; 36: 950-962https://doi.org/10.1093/ajcn/36.5.950
        • Taskinen M.-R.
        Lipoprotein lipase in diabetes.
        Diabetes / Metabolism Reviews. 1987; 3: 551-570https://doi.org/10.1002/dmr.5610030208
        • Donovan E.L.
        • Pettine S.M.
        • Hickey M.S.
        • Hamilton K.L.
        • Miller B.F.
        Lipidomic analysis of human plasma reveals ether-linked lipids that are elevated in morbidly obese humans compared to lean.
        Diabetol Metab Syndr. 2013; 5: 24https://doi.org/10.1186/1758-5996-5-24
        • Zeisel S.H.
        Dietary choline deficiency causes DNA strand breaks and alters epigenetic marks on DNA and histones.
        Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis. 2012; 733: 34-38https://doi.org/10.1016/j.mrfmmm.2011.10.008
        • Yamaguchi K.
        • Yang L.
        • McCall S.
        • Huang J.
        • Yu X.X.
        • Pandey S.K.
        • et al.
        Inhibiting triglyceride synthesis improves hepatic steatosis but exacerbates liver damage and fibrosis in obese mice with nonalcoholic steatohepatitis.
        Hepatology. 2007; 45: 1366-1374https://doi.org/10.1002/hep.21655
        • Gault C.R.
        • Obeid L.M.
        • Hannun Y.A.
        An Overview of Sphingolipid Metabolism: From Synthesis to Breakdown. 2010; : 1-23https://doi.org/10.1007/978-1-4419-6741-1_1
        • Kovilakath A.
        • Jamil M.
        • Cowart L.A.
        Sphingolipids in the Heart: From Cradle to Grave.
        Front Endocrinol (Lausanne). 2020; 11https://doi.org/10.3389/fendo.2020.00652
        • Persson L.
        • Cao G.
        • Ståhle L.
        • Sjöberg B.G.
        • Troutt J.S.
        • Konrad R.J.
        • et al.
        Circulating proprotein convertase subtilisin kexin type 9 has a diurnal rhythm synchronous with cholesterol synthesis and is reduced by fasting in humans.
        Arterioscler Thromb Vasc Biol. 2010; 30: 2666-2672https://doi.org/10.1161/ATVBAHA.110.214130
        • Eberlé D.
        • Hegarty B.
        • Bossard P.
        • Ferré P.
        • Foufelle F.
        SREBP transcription factors: master regulators of lipid homeostasis.
        Biochimie. 2004; 86: 839-848https://doi.org/10.1016/j.biochi.2004.09.018
        • Miao J.
        • Haas J.T.
        • Manthena P.
        • Wang Y.
        • Zhao E.
        • Vaitheesvaran B.
        • et al.
        Hepatic insulin receptor deficiency impairs the SREBP-2 response to feeding and statins.
        J Lipid Res. 2014; 55: 659-667https://doi.org/10.1194/jlr.M043711
        • Vergès B.
        Dyslipidemia in Type 1 Diabetes: A Masked Danger.
        Trends Endocrinol Metab. 2020; 31: 422-434https://doi.org/10.1016/j.tem.2020.01.015
        • Chen L.
        • Cheng C.-Y.
        • Choi H.
        • Ikram M.K.
        • Sabanayagam C.
        • Tan G.S.W.
        • et al.
        Plasma Metabonomic Profiling of Diabetic Retinopathy.
        Diabetes. 2016; 65: 1099-1108https://doi.org/10.2337/db15-0661
        • Bandaru P.
        • Shankar A.
        Association between Serum Uric Acid Levels and Diabetes Mellitus.
        Int J Endocrinol. 2011; 2011: 1-6https://doi.org/10.1155/2011/604715
        • Haque T.
        • Rahman S.
        • Islam S.
        • Molla N.H.
        • Ali N.
        Assessment of the relationship between serum uric acid and glucose levels in healthy, prediabetic and diabetic individuals.
        Diabetol Metab Syndr. 2019; 11: 49https://doi.org/10.1186/s13098-019-0446-6
        • Lytvyn Y.
        • Škrtić M.
        • Yang G.K.
        • Yip P.M.
        • Perkins B.A.
        • Cherney D.Z.I.
        Glycosuria-mediated urinary uric acid excretion in patients with uncomplicated type 1 diabetes mellitus.
        American Journal of Physiology-Renal Physiology. 2015; 308: F77-F83https://doi.org/10.1152/ajprenal.00555.2014
      1. MSWolever T, Piekarz A, Hollands M, Cde R, Younker K, Cde MR. Sugar Alcohols and Diabetes: A Review. vol. 26. 2002.

        • Hyötyläinen T.
        • Orešič M.
        Optimizing the lipidomics workflow for clinical studies—practical considerations.
        Anal Bioanal Chem. 2015; 407: 4973-4993https://doi.org/10.1007/s00216-015-8633-2