Advertisement
Research Article| Volume 197, 110567, March 2023

Download started.

Ok

Lower-than-normal glycemic levels to achieve optimal reduction of diabetes risk among individuals with prediabetes: A prospective cohort study

  • Hung-Ju Lin
    Affiliations
    Health Management Center, National Taiwan University Hospital, Taipei, Taiwan

    Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
    Search for articles by this author
  • Jui Wang
    Affiliations
    Health Management Center, National Taiwan University Hospital, Taipei, Taiwan
    Search for articles by this author
  • Po-Yuan Tseng
    Affiliations
    All Vista Healthcare Center, Center for Artificial Intelligence and Advanced Robotics, National Taiwan University, Taiwan
    Search for articles by this author
  • Li-Chen Fu
    Affiliations
    Department of Electrical Engineering, Department of Computer Science and Information Engineering, and Center for Artificial Intelligence & Advanced Robotics, National Taiwan University, Taipei, Taiwan
    Search for articles by this author
  • Yi-Chia Lee
    Affiliations
    Health Management Center, National Taiwan University Hospital, Taipei, Taiwan

    Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan

    Integrative Medical Database Center, Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan

    Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan.
    Search for articles by this author
  • Ming-Shiang Wu
    Affiliations
    Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
    Search for articles by this author
  • Wei-Shiung Yang
    Correspondence
    Corresponding authors at: Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan.
    Affiliations
    Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan

    Integrative Medical Database Center, Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan

    Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
    Search for articles by this author
  • Han-Mo Chiu
    Correspondence
    Corresponding authors at: Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan.
    Affiliations
    Health Management Center, National Taiwan University Hospital, Taipei, Taiwan

    Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
    Search for articles by this author
Published:February 02, 2023DOI:https://doi.org/10.1016/j.diabres.2023.110567

      Highlights

      • Individuals with prediabetes are at increased risk for incident diabetes.
      • The lower fasting and postprandial glucose, the lower risk for incident diabetes.
      • Lower-than-normal glycemic levels “normalized” the diabetes risk from prediabetes.
      • Stringent glycemic control of prediabetes is beneficial for diabetes prevention.

      Abstract

      Aims/hypothesis

      To determine whether lower than currently accepted glycemic levels could lead to optimal risk reduction of incident diabetes among individuals with prediabetes.

      Methods

      We enrolled 9903 individuals with prediabetes and 16,902 individuals with normoglycemia from a prospective cohort participating health check-ups between 2006 and 2017. While classifying fasting glucose into <5.0, 5.0–5.5, and 5.6–6.9 mmol/L and postprandial glucose into <6.7, 6.7–7.7, and 7.8–11.0 mmol/L, we grouped fasting/postprandial glucose into five categories (<5.0/<6.7, <5.0/6.7–7.7, 5.0–5.5/<6.7, 5.0–5.5/6.7–7.7 mmol/L, 5.6–6.9/7.8–11.0 mmol/L). The primary outcome was incident diabetes.

      Results

      In individuals with prediabetes, the presence of a baseline fasting glucose <5.0 mmol/L or a postprandial glucose <6.7 mmol/L led to a greater risk reduction of incident diabetes with hazard ratios of 0.34 (95% confidence interval, 0.27–0.42) and 0.47 (0.41–0.54), respectively, relative to a fasting glucose 5.6–6.9 mmol/L and a postprandial glucose 7.8–11.0 mmol/L. For individuals with prediabetes having fasting/postprandial glucose <5.0/<6.7 mmol/L, the incidence of 6.4 (4.7–8.8) per 1000 person-years corresponded to that of 5.8 (4.2–8.0) per 1000 person-years for individuals with normoglycemia having 5.0–5.5/6.7–7.7 mmol/L.

      Conclusions/interpretation

      Given that lower-than-normal glycemic levels were plausible for optimal risk reduction of diabetes, stringent glycemic management could be beneficial for diabetes prevention among individuals with prediabetes.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Diabetes Research and Clinical Practice
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • American Diabetes Association Professional Practice Committee
        2. Classification and diagnosis of diabetes: Standards of Medical Care in Diabetes-2022.
        Diabetes Care. 2022; 45: S17-S38https://doi.org/10.2337/dc22-S002
        • Echouffo-Tcheugui J.B.
        • Selvin E.
        Prediabetes and what it means: the epidemiological evidence.
        Annu Rev Public Health. 2021; 42: 59-77https://doi.org/10.1146/annurev-publhealth-090419-102644
        • Rooney M.R.
        • Rawlings A.M.
        • Pankow J.S.
        • Echouffo Tcheugui J.B.
        • Coresh J.
        • Sharrett A.R.
        • et al.
        Risk of progression to diabetes among older adults with prediabetes.
        JAMA Intern Med. 2021; 181: 511-519https://doi.org/10.1001/jamainternmed.2020.8774
        • Mavrogianni C.
        • Lambrinou C.P.
        • Androutsos O.
        • Lindström J.
        • Kivelä J.
        • Cardon G.
        • et al.
        Evaluation of the Finnish Diabetes Risk Score as a screening tool for undiagnosed type 2 diabetes and dysglycaemia among early middle-aged adults in a large-scale European cohort. The Feel4Diabetes-study.
        Diabetes Res Clin Pract. 2019; 150: 99-110https://doi.org/10.1016/j.diabres.2019.02.017
        • Zhang L.
        • Zhang Z.
        • Zhang Y.
        • Hu G.
        • Chen L.
        Evaluation of Finnish Diabetes Risk Score in screening undiagnosed diabetes and prediabetes among U.S. adults by gender and race: NHANES 1999-2010.
        PLoS One. 2014; 9e97865https://doi.org/10.1371/journal.pone.0097865
        • International Expert Committee
        International Expert Committee report on the role of the A1C assay in the diagnosis of diabetes.
        Diabetes Care. 2009; 32: 1327-1334https://doi.org/10.2337/dc09-9033
        • World Health Organization
        • International Diabetes Federation
        Definition and diagnosis of diabetes mellitus and intermediate hyperglycaemia : report of a WHO/IDF consultation.
        World Health Organization, Geneva2006
        • DECODE Study Group
        Age- and sex-specific prevalences of diabetes and impaired glucose regulation in 13 European cohorts.
        Diabetes Care. 2003; 26: 61-69https://doi.org/10.2337/diacare.26.1.61
        • Qiao Q.
        • Hu G.
        • Tuomilehto J.
        • Nakagami T.
        • Balkau B.
        • Borch-Johnsen K.
        • et al.
        Age- and sex-specific prevalence of diabetes and impaired glucose regulation in 11 Asian cohorts.
        Diabetes Care. 2003; 26: 1770-1780https://doi.org/10.2337/diacare.26.6.1770
        • Zhang X.
        • Gregg E.W.
        • Williamson D.F.
        • Barker L.E.
        • Thomas W.
        • Bullard K.M.
        • et al.
        A1C level and future risk of diabetes: a systematic review.
        Diabetes Care. 2010; 33: 1665-1673https://doi.org/10.2337/dc09-1939
        • Heianza Y.
        • Hara S.
        • Arase Y.
        • Saito K.
        • Fujiwara K.
        • Tsuji H.
        • et al.
        HbA1c 5·7-6·4% and impaired fasting plasma glucose for diagnosis of prediabetes and risk of progression to diabetes in Japan (TOPICS 3): a longitudinal cohort study.
        Lancet. 2011; 378: 147-155https://doi.org/10.1016/s0140-6736(11)60472-8
        • Pan Y.
        • Chen W.
        • Wang Y.
        Prediabetes and outcome of ischemic stroke or transient ischemic attack: a systematic review and meta-analysis.
        J Stroke Cerebrovasc Dis. 2019; 28: 683-692https://doi.org/10.1016/j.jstrokecerebrovasdis.2018.11.008
        • Huang Y.
        • Cai X.
        • Mai W.
        • Li M.
        • Hu Y.
        Association between prediabetes and risk of cardiovascular disease and all cause mortality: systematic review and meta-analysis.
        BMJ. 2016; 355i5953https://doi.org/10.1136/bmj.i5953
        • Plantinga L.C.
        • Crews D.C.
        • Coresh J.
        • Miller 3rd, E.R.
        • Saran R.
        • Yee J.
        • et al.
        Prevalence of chronic kidney disease in US adults with undiagnosed diabetes or prediabetes.
        Clin J Am Soc Nephrol. 2010; 5: 673-682https://doi.org/10.2215/cjn.07891109
        • Lindström J.
        • Ilanne-Parikka P.
        • Peltonen M.
        • Aunola S.
        • Eriksson J.G.
        • Hemiö K.
        • et al.
        Sustained reduction in the incidence of type 2 diabetes by lifestyle intervention: follow-up of the Finnish Diabetes Prevention Study.
        Lancet. 2006; 368: 1673-1679https://doi.org/10.1016/s0140-6736(06)69701-8
        • Diabetes Prevention Program Research Group
        Long-term effects of lifestyle intervention or metformin on diabetes development and microvascular complications over 15-year follow-up: the Diabetes Prevention Program Outcomes Study.
        Lancet Diabetes Endocrinol. 2015; 3: 866-875https://doi.org/10.1016/s2213-8587(15)00291-0
        • Gong Q.
        • Zhang P.
        • Wang J.
        • Ma J.
        • An Y.
        • Chen Y.
        • et al.
        Morbidity and mortality after lifestyle intervention for people with impaired glucose tolerance: 30-year results of the Da Qing Diabetes Prevention Outcome Study.
        Lancet Diabetes Endocrinol. 2019; 7: 452-461https://doi.org/10.1016/S2213-8587(19)30093-2
        • Lindström J.
        • Peltonen M.
        • Eriksson J.G.
        • Ilanne-Parikka P.
        • Aunola S.
        • Keinänen-Kiukaanniemi S.
        • et al.
        Improved lifestyle and decreased diabetes risk over 13 years: long-term follow-up of the randomised Finnish Diabetes Prevention Study (DPS).
        Diabetologia. 2013; 56: 284-293https://doi.org/10.1007/s00125-012-2752-5
        • Goldberg R.B.
        • Orchard T.J.
        • Crandall J.P.
        • Boyko E.J.
        • Budoff M.
        • Dabelea D.
        • et al.
        Effects of long-term metformin and lifestyle interventions on cardiovascular events in the diabetes prevention program and its outcome study.
        Circulation. 2022; 145: 1632-1641https://doi.org/10.1161/circulationaha.121.056756
        • Li G.
        • Zhang P.
        • Wang J.
        • An Y.
        • Gong Q.
        • Gregg E.W.
        • et al.
        Cardiovascular mortality, all-cause mortality, and diabetes incidence after lifestyle intervention for people with impaired glucose tolerance in the Da Qing Diabetes Prevention Study: a 23-year follow-up study.
        Lancet Diabetes Endocrinol. 2014; 2: 474-480https://doi.org/10.1016/s2213-8587(14)70057-9
        • Uusitupa M.
        • Peltonen M.
        • Lindström J.
        • Aunola S.
        • Ilanne-Parikka P.
        • Keinänen-Kiukaanniemi S.
        • et al.
        Ten-year mortality and cardiovascular morbidity in the Finnish Diabetes Prevention Study--secondary analysis of the randomized trial.
        PLoS One. 2009; 4e5656https://doi.org/10.1371/journal.pone.0005656
        • Knowler W.C.
        • Barrett-Connor E.
        • Fowler S.E.
        • Hamman R.F.
        • Lachin J.M.
        • Walker E.A.
        • et al.
        Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin.
        N Engl J Med. 2002; 346: 393-403https://doi.org/10.1056/NEJMoa012512
        • Knowler W.C.
        • Fowler S.E.
        • Hamman R.F.
        • Christophi C.A.
        • Hoffman H.J.
        • Brenneman A.T.
        • et al.
        10-year follow-up of diabetes incidence and weight loss in the Diabetes Prevention Program Outcomes Study.
        Lancet. 2009; 374: 1677-1686https://doi.org/10.1016/s0140-6736(09)61457-4
        • Perreault L.
        • Pan Q.
        • Mather K.J.
        • Watson K.E.
        • Hamman R.F.
        • Kahn S.E.
        Effect of regression from prediabetes to normal glucose regulation on long-term reduction in diabetes risk: results from the Diabetes Prevention Program Outcomes Study.
        Lancet. 2012; 379: 2243-2251https://doi.org/10.1016/s0140-6736(12)60525-x
        • Perreault L.
        • Pan Q.
        • Schroeder E.B.
        • Kalyani R.R.
        • Bray G.A.
        • Dagogo-Jack S.
        • et al.
        Regression from prediabetes to normal glucose regulation and prevalence of microvascular disease in the Diabetes Prevention Program Outcomes Study (DPPOS).
        Diabetes Care. 2019; 42: 1809-1815https://doi.org/10.2337/dc19-0244
        • Lin H.J.
        • Lee B.C.
        • Ho Y.L.
        • Lin Y.H.
        • Chen C.Y.
        • Hsu H.C.
        • et al.
        Postprandial glucose improves the risk prediction of cardiovascular death beyond the metabolic syndrome in the nondiabetic population.
        Diabetes Care. 2009; 32: 1721-1726https://doi.org/10.2337/dc08-2337
        • Vistisen D.
        • Kivimäki M.
        • Perreault L.
        • Hulman A.
        • Witte D.R.
        • Brunner E.J.
        • et al.
        Reversion from prediabetes to normoglycaemia and risk of cardiovascular disease and mortality: the Whitehall II cohort study.
        Diabetologia. 2019; 62: 1385-1390https://doi.org/10.1007/s00125-019-4895-0
        • Selvin E.
        • Crainiceanu C.M.
        • Brancati F.L.
        • Coresh J.
        Short-term variability in measures of glycemia and implications for the classification of diabetes.
        Arch Intern Med. 2007; 167: 1545-1551https://doi.org/10.1001/archinte.167.14.1545
        • Lee Y.C.
        • Chao Y.T.
        • Lin P.J.
        • Yang Y.Y.
        • Yang Y.C.
        • Chu C.C.
        • et al.
        Quality assurance of integrative big data for medical research within a multihospital system.
        J Formos Med Assoc. 2022; 121: 1728-1738https://doi.org/10.1016/j.jfma.2021.12.024
        • Tirosh A.
        • Shai I.
        • Tekes-Manova D.
        • Israeli E.
        • Pereg D.
        • Shochat T.
        • et al.
        Normal fasting plasma glucose levels and type 2 diabetes in young men.
        N Engl J Med. 2005; 353: 1454-1462https://doi.org/10.1056/NEJMoa050080
        • Brambilla P.
        • La Valle E.
        • Falbo R.
        • Limonta G.
        • Signorini S.
        • Cappellini F.
        • et al.
        Normal fasting plasma glucose and risk of type 2 diabetes.
        Diabetes Care. 2011; 34: 1372-1374https://doi.org/10.2337/dc10-2263
        • Freckmann G.
        • Hagenlocher S.
        • Baumstark A.
        • Jendrike N.
        • Gillen R.C.
        • Rössner K.
        • et al.
        Continuous glucose profiles in healthy subjects under everyday life conditions and after different meals.
        J Diabetes Sci Technol. 2007; 1: 695-703https://doi.org/10.1177/193229680700100513
        • Hulman A.
        • Gujral U.P.
        • Narayan K.M.V.
        • Pradeepa R.
        • Mohan D.
        • Anjana R.M.
        • et al.
        Glucose patterns during the OGTT and risk of future diabetes in an urban Indian population: The CARRS study.
        Diabetes Res Clin Pract. 2017; 126: 192-197https://doi.org/10.1016/j.diabres.2017.01.009
        • González-Rodríguez M.
        • Pazos-Couselo M.
        • García-López J.M.
        • Rodríguez-Segade S.
        • Rodríguez-García J.
        • Túñez-Bastida C.
        • et al.
        Postprandial glycemic response in a non-diabetic adult population: the effect of nutrients is different between men and women.
        Nutr Metab (Lond). 2019; 16: 46https://doi.org/10.1186/s12986-019-0368-1
        • Hostalek U.
        Global epidemiology of prediabetes - present and future perspectives.
        Clin Diab Endocrinol. 2019; 5: 5https://doi.org/10.1186/s40842-019-0080-0
        • International Diabetes Federation
        Global picture.
        10th ed. IDF Diabetes Atlas, Brussels, Belgium2021: 50
        • Veronese N.
        • Noale M.
        • Sinclair A.
        • Barbagallo M.
        • Dominguez L.J.
        • Smith L.
        • et al.
        Risk of progression to diabetes and mortality in older people with prediabetes: The English longitudinal study on ageing.
        Age Ageing. 2022; 51: afab222https://doi.org/10.1093/ageing/afab222
        • Shang Y.
        • Marseglia A.
        • Fratiglioni L.
        • Welmer A.K.
        • Wang R.
        • Wang H.X.
        • et al.
        Natural history of prediabetes in older adults from a population-based longitudinal study.
        J Intern Med. 2019; 286: 326-340https://doi.org/10.1111/joim.12920
        • Nichols G.A.
        • Hillier T.A.
        • Brown J.B.
        Normal fasting plasma glucose and risk of type 2 diabetes diagnosis.
        Am J Med. 2008; 121: 519-524https://doi.org/10.1016/j.amjmed.2008.02.026
        • Færch K.
        • Alssema M.
        • Mela D.J.
        • Borg R.
        • Vistisen D.
        Relative contributions of preprandial and postprandial glucose exposures, glycemic variability, and non-glycemic factors to HbA1cin individuals with and without diabetes.
        Nutr Diabetes. 2018; 8: 38https://doi.org/10.1038/s41387-018-0047-8
        • Selvin E.
        • Steffes M.W.
        • Ballantyne C.M.
        • Hoogeveen R.C.
        • Coresh J.
        • Brancati F.L.
        Racial differences in glycemic markers: a cross-sectional analysis of community-based data.
        Ann Intern Med. 2011; 154: 303-309https://doi.org/10.7326/0003-4819-154-5-201103010-00004
        • Snieder H.
        • Sawtell P.A.
        • Ross L.
        • Walker J.
        • Spector T.D.
        • Leslie R.D.
        HbA(1c) levels are genetically determined even in type 1 diabetes: evidence from healthy and diabetic twins.
        Diabetes. 2001; 50: 2858-2863https://doi.org/10.2337/diabetes.50.12.2858
        • Rijkelijkhuizen J.M.
        • Girman C.J.
        • Mari A.
        • Alssema M.
        • Rhodes T.
        • Nijpels G.
        • et al.
        Classical and model-based estimates of beta-cell function during a mixed meal vs. an OGTT in a population-based cohort.
        Diabetes Res Clin Pract. 2009; 83: 280-288https://doi.org/10.1016/j.diabres.2008.11.017
        • Kössler T.
        • Bobrov P.
        • Strassburger K.
        • Kuss O.
        • Zaharia O.P.
        • Karusheva Y.
        • et al.
        Impact of mixed meal tolerance test composition on measures of beta-cell function in type 2 diabetes.
        Nutr Metab (Lond). 2021; 18: 47https://doi.org/10.1186/s12986-021-00556-1
        • Besser R.E.
        • Shields B.M.
        • Casas R.
        • Hattersley A.T.
        • Ludvigsson J.
        Lessons from the mixed-meal tolerance test: use of 90-minute and fasting C-peptide in pediatric diabetes.
        Diabetes Care. 2013; 36: 195-201https://doi.org/10.2337/dc12-0836
        • Bergman M.
        • Abdul-Ghani M.
        • DeFronzo R.A.
        • Manco M.
        • Sesti G.
        • Fiorentino T.V.
        • et al.
        Review of methods for detecting glycemic disorders.
        Diabetes Res Clin Pract. 2020; 165108233https://doi.org/10.1016/j.diabres.2020.108233
        • American Diabetes Association Professional Practice Committee
        3. Prevention or delay of type 2 diabetes and associated comorbidities: Standards of Medical Care in Diabetes-2022.
        Diabetes Care. 2022; 45: S39-S45https://doi.org/10.2337/dc22-S003
        • Li G.
        • Zhang P.
        • Wang J.
        • Gregg E.W.
        • Yang W.
        • Gong Q.
        • et al.
        The long-term effect of lifestyle interventions to prevent diabetes in the China Da Qing Diabetes Prevention Study: a 20-year follow-up study.
        Lancet. 2008; 371: 1783-1789https://doi.org/10.1016/s0140-6736(08)60766-7
        • Lindström J.
        • Louheranta A.
        • Mannelin M.
        • Rastas M.
        • Salminen V.
        • Eriksson J.
        • et al.
        The Finnish Diabetes Prevention Study (DPS): lifestyle intervention and 3-year results on diet and physical activity.
        Diabetes Care. 2003; 26: 3230-3236https://doi.org/10.2337/diacare.26.12.3230
        • Xie X.
        • Atkins E.
        • Lv J.
        • Bennett A.
        • Neal B.
        • Ninomiya T.
        • et al.
        Effects of intensive blood pressure lowering on cardiovascular and renal outcomes: updated systematic review and meta-analysis.
        Lancet. 2016; 387: 435-443https://doi.org/10.1016/s0140-6736(15)00805-3
        • Khan S.U.
        • Khan M.U.
        • Virani S.S.
        • Khan M.S.
        • Khan M.Z.
        • Rashid M.
        • et al.
        Efficacy and safety for the achievement of guideline-recommended lower low-density lipoprotein cholesterol levels: a systematic review and meta-analysis.
        Eur J Prev Cardiol. 2022; 28: 2001-2009https://doi.org/10.1093/eurjpc/zwaa093
        • Draznin B.
        • Aroda V.R.
        • Bakris G.
        • Benson G.
        • Brown F.M.
        • Freeman R.
        • et al.
        6. Glycemic targets: Standards of Medical Care in Diabetes-2022.
        Diabetes Care. 2022; 45: S83-S96https://doi.org/10.2337/dc22-S006