Abstract
Aims
Methods
Results
Conclusions
Keywords
1. Introduction
2. Methods
2.1 Data source
2.2 Study population and eligibility criteria
Cohort | OMOP Concept ID | Concept Name |
---|---|---|
PCOS | 3654296 | Polycystic ovary syndrome of bilateral ovaries |
PCOS | 3654294 | Polycystic ovary syndrome of right ovary |
PCOS | 40443308 | Polycystic ovary syndrome |
PCOS | 3654295 | Polycystic ovary syndrome of left ovary |
Prediabetes | 4029951 | Impaired glucose tolerance in MODY |
Prediabetes | 4229140 | Impaired glucose tolerance associated with insulin receptor abnormality |
Prediabetes | 40316773 | Prediabetes |
Prediabetes | 4007106 | [D]Glucose tolerance test abnormal |
Prediabetes | 4251180 | Impaired glucose tolerance associated with hormonal etiology |
Prediabetes | 4311629 | Impaired glucose tolerance |
Prediabetes | 37201113 | Prediabetes |
Prediabetes | 3176858 | Prediabetes |
Prediabetes | 4045297 | Impaired glucose tolerance in obese |
Prediabetes | 4136531 | Impaired glucose tolerance in nonobese |
Prediabetes | 4111906 | Impaired glucose tolerance associated with pancreatic disease |
Prediabetes | 37018196 | Prediabetes |
Prediabetes | 3107926 | Prediabetes |
Prediabetes | 4027550 | Impaired glucose tolerance with hyperinsulinism |
Prediabetes | 44808385 | Pre-diabetes |
Prediabetes | 4047260 | Impaired glucose tolerance associated with genetic syndrome |
Prediabetes | 4263688 | Impaired glucose tolerance associated with drugs |
Prediabetes | 44826981 | Impaired fasting glucose |
Prediabetes | 45597199 | Impaired fasting glucose |
2.3 Study design
2.4 Missingness imputation
Casiraghi E, Wong R, Hall M, et al. A methodological framework for the comparative evaluation of multiple imputation methods: multiple imputation of race, ethnicity and body mass index in the U.S. National COVID Cohort Collaborative [Internet]. arXiv [cs.AI]. 2022;Available from: http://arxiv.org/abs/2206.06444.
2.5 Propensity score weighting
All patients | On Levothyroxine | On Metformin | p-value | |
---|---|---|---|---|
n | 3136 | 2736 | 400 | |
DEMOGRAPHICS | ||||
Age | 59.27 (15.03) | 61.18 (14.07) | 46.52 (14.99) | 0 |
BMI | 33.74 (8.39) | 32.98 (7.97) | 38.20 (9.36) | 0 |
Length of stay | 8.14 (39.64) | 7.88 (32.18) | 9.93 (72.44) | 0.336 |
INPATIENT/OUTPATIENT | ||||
Inpatient or ED | 1250 (39.9%) | 1161 (42.4%) | 89 (22.2%) | 0 |
GENDER | 0.081 | |||
Male | 766 (24.4%) | 651 (23.8%) | 115 (28.7%) | |
Female | 2367 (75.5%) | 2082 (76.1%) | 285 (71.2%) | 0.041 |
RACE | 0 | |||
White | 2105 (79.3%) | 1887 (81.1%) | 218 (66.5%) | 0 |
Black or African American | 418 (13.3%) | 325 (11.9%) | 93 (23.2%) | |
Asian | 103 (3.3%) | >20 | <20 | |
Other | 23 (0.7%) | <20 | <20 | |
NHOPI* | <20 | <20 | <20 | |
ETHNICITY | 0 | |||
Hispanic or Latino | 669 (22.9%) | 555 (21.8%) | 114 (31.1%) | |
Not Hispanic or Latino | 2247 (77.1%) | 1994 (78.2%) | 253 (68.9%) | |
CCI | 1045 (33.3%) | 980 (35.8%) | 65 (16.2%) | 0 |
Current or former smoker | 660 (21.0%) | 571 (20.9%) | 89 (22.2%) | 0.571 |
HOSPITAL EVENTS | ||||
Invasive ventilation | 105 (3.3%) | >20 | <20 | 0.019 |
ECMO | <20 | <20 | <20 | 1 |
COMORBIDITIES | ||||
Hypertension | 1656 (52.8%) | 1489 (54.4%) | 167 (41.8%) | 0 |
Neoplasm | 1206 (38.5%) | 1115 (40.8%) | 91 (22.8%) | 0 |
Heart disease | 985 (31.4%) | 938 (34.3%) | 47 (11.8%) | 0 |
Chronic respiratory disease | 817 (26.1%) | 732 (26.8%) | 85 (21.2%) | 0.023 |
Liver disease | 351 (11.2%) | 322 (11.8%) | 29 (7.2%) | 0.01 |
Kidney disease | 343 (10.9%) | >20 | <20 | 0 |
Nicotine dependence | 269 (8.6%) | 245 (9.0%) | 24 (6.0%) | 0.061 |
Cerebral infarction | 96 (3.1%) | >20 | <20 | 0.036 |
Arthritis | 90 (2.9%) | >20 | <20 | 0.055 |
Dementia | 88 (2.8%) | >20 | <20 | 0.005 |
PCOS | 81 (2.6%) | <20 | >20 | 0 |
Psoriasis | 63 (2.0%) | >20 | <20 | 0.177 |
All patients | On Levothyroxine | On Metformin | p-value | |
---|---|---|---|---|
n | 282 | 86 | 196 | |
DEMOGRAPHICS | ||||
Age | 33.18 (8.42) | 35.81 (8.06) | 32.03 (8.33) | 0 |
BMI | 37.90 (8.94) | 36.73 (8.38) | 38.43 (9.15) | 0.173 |
Length of stay | 7.04 (39.95) | 12.51 (64.96) | 4.63 (21.00) | 0.128 |
INPATIENT/OUTPATIENT | ||||
Inpatient or ED | 72 (25.5%) | 28 (32.6%) | 44 (22.4%) | 0.1 |
RACE | 0.379 | |||
White | 190 (67.4%) | 65 (75.6%) | 125 (63.8%) | 0.059 |
Black or African American | 33 (11.7%) | < 20 | > 20 | |
Asian | < 20 | < 20 | < 20 | |
Other | < 20 | < 20 | < 20 | |
NHOPI* | < 20 | < 20 | < 20 | |
ETHNICITY | 0.85 | |||
Hispanic or Latino | 63 (24.8%) | < 20 | >20 | |
Not Hispanic or Latino | 191 (75.2%) | 59 (76.6%) | 132 (74.6%) | |
CCI | 30 (10.6%) | < 20 | < 20 | 0.008 |
Current or former smoker | 59 (20.9%) | < 20 | >20 | 0.267 |
HOSPITAL EVENTS | ||||
AKI in hospital | <20 | <20 | <20 | 0.671 |
Invasive ventilation | <20 | <20 | <20 | 0.671 |
ECMO | 0 | 0 | 0 | – |
COMORBIDITIES | ||||
Prediabetes | 84 (29.8%) | < 20 | > 20 | 0.044 |
Neoplasm | 57 (20.2%) | 22 (25.6%) | 35 (17.9%) | 0.185 |
Hypertension | 54 (19.1%) | < 20 | >20 | 0.992 |
Chronic respiratory disease | 49 (17.4%) | < 20 | >20 | 1 |
Heart disease | 21 (7.4%) | < 20 | < 20 | 0.302 |
Liver disease | < 20 | < 20 | < 20 | 0.005 |
Nicotine dependence | < 20 | < 20 | < 20 | 0.966 |
Kidney disease | < 20 | < 20 | < 20 | 0.759 |
All patients | On Ondansentron | On Metformin | p-value | |
---|---|---|---|---|
n | 8015 | 7618 | 397 | |
DEMOGRAPHICS | ||||
age | 57.82 (16.14) | 58.41 (15.98) | 46.80 (15.09) | 0 |
BMI | 33.22 (8.78) | 32.85 (8.62) | 37.88 (9.41) | 0 |
length of stay | 10.66 (49.07) | 10.75 (47.57) | 8.91 (72.00) | 0.466 |
INPATIENT/OUTPATIENT | ||||
Inpatient or ED | 6614 (82.5%) | 6544 (85.9%) | 70 (17.6%) | 0 |
GENDER | 0 | |||
Male | 3346 (41.7%) | 3235 (42.5%) | 111 (28.0%) | |
Female | 4661 (58.2%) | 4375 (57.4%) | 286 (72.0%) | |
RACE | 0.07 | |||
White | 4738 (59.1%) | 4515 (59.3%) | 223 (56.2%) | |
Black or African American | 1873 (23.4%) | 1781 (23.4%) | 92 (23.2%) | |
Asian | 228 (2.8%) | > 20 | < 20 | |
Other | > 20 | > 20 | < 20 | |
NHOPI* | 20 (0.2%) | < 20 | < 20 | |
ETHNICITY | 0 | |||
Hispanic or Latino | 1275 (17.3%) | 1163 (16.6%) | 112 (30.4%) | |
Not Hispanic or Latino | 6088 (82.7%) | 5831 (83.4%) | 257 (69.6%) | |
CCI > 1 | 2583 (32.2%) | 2520 (33.1%) | 63 (15.9%) | 0 |
Current or former smoker | 1456 (18.2%) | 1368 (18.0%) | 88 (22.2%) | 0.04 |
HOSPITAL EVENTS | ||||
AKI in hospital | 973 (12.1%) | > 20 | < 20 | 0 |
Invasive ventilation | 40 (0.5%) | > 20 | < 20 | 0.725 |
ECMO | 552 (6.9%) | > 20 | < 20 | 0 |
COMORBIDITIES | ||||
hypertension | 3884 (48.5%) | 3720 (48.8%) | 164 (41.3%) | 0.004 |
heart disease | 2659 (33.2%) | 2614 (34.3%) | 45 (11.3%) | 0 |
neoplasm | 2492 (31.1%) | 2400 (31.5%) | 92 (23.2%) | 0.001 |
chronic respiratory disease | 1787 (22.3%) | 1704 (22.4%) | 83 (20.9%) | 0.535 |
kidney disease | 935 (11.7%) | > 20 | < 20 | 0 |
liver disease | 849 (10.6%) | 822 (10.8%) | 27 (6.8%) | 0.015 |
nicotine dependence | 759 (9.5%) | 734 (9.6%) | 25 (6.3%) | 0.033 |
cerebral infarction | 327 (4.1%) | > 20 | < 20 | 0 |
dementia | 213 (2.7%) | > 20 | < 20 | 0.01 |
arthritis | 193 (2.4%) | > 20 | < 20 | 0.304 |
All patients | On Ondansentron | On Metformin | p-value | |
---|---|---|---|---|
n | 501 | 309 | 192 | |
DEMOGRAPHICS | ||||
age | 32.54 (8.95) | 32.63 (9.21) | 32.39 (8.52) | 0.762 |
BMI | 37.94 (9.39) | 37.87 (9.60) | 38.04 (9.13) | 0.862 |
length of stay | 5.45 (53.44) | 6.94 (67.02) | 3.04 (15.00) | 0.427 |
INPATIENT/OUTPATIENT | ||||
Inpatient or ED | 229 (45.7%) | 195 (63.1%) | 34 (17.7%) | 0 |
RACE | 0.561 | |||
White | 331 (66.1%) | 210 (68.0%) | 121 (63.0%) | |
Black or African American | 76 (15.2%) | 49 (15.9%) | 27 (14.1%) | |
Asian | < 20 | < 20 | < 20 | |
Other | < 20 | < 20 | < 20 | |
NHOPI* | < 20 | < 20 | < 20 | |
ETHNICITY | 0.224 | |||
Hispanic or Latino | 100 (22.6%) | 55 (20.4%) | 45 (25.9%) | |
Not Hispanic or Latino | 401 (87.4%) | 214 (79.6%) | 129 (74.1%) | |
CCI > 1 | 75 (15.0%) | > 20 | < 20 | 0.001 |
Current or former smoker | 96 (19.2%) | 50 (16.2%) | 46 (24.0%) | 0.042 |
HOSPITAL EVENTS | ||||
AKI in hospital | < 20 | < 20 | 0 | 0.286 |
Invasive ventilation | 0 | 0 | 0 | – |
ECMO | < 20 | < 20 | 0 | 0.698 |
COMORBIDITIES | ||||
prediabetes | 121 (24.2%) | 56 (18.1%) | 65 (33.9%) | 0 |
neoplasm | 118 (23.6%) | 85 (27.5%) | 33 (17.2%) | 0.011 |
hypertension | 117 (23.4%) | 85 (27.5%) | 32 (16.7%) | 0.007 |
chronic respiratory disease | 101 (20.2%) | 71 (23.0%) | 30 (15.6%) | 0.06 |
heart disease | 60 (12.0%) | > 20 | < 20 | 0 |
liver disease | 45 (9.0%) | > 20 | < 20 | 0.001 |
nicotine dependence | 41 (8.2%) | > 20 | < 20 | 0.037 |
2.6 Outcome definition
2.7 Covariates
2.8 Statistical analysis
3. Results

(A) | ||||||||
---|---|---|---|---|---|---|---|---|
PCOS | Prediabetes | |||||||
All | Metformin | Levothyroxine | Cohen’s D | All | Metformin | Levothyroxine | Cohen’s D | |
n | 282 | 196 | 86 | 3136 | 400 | 2736 | ||
Mild | 210 (74.5%) | 152 (77.6%) | 58 (67.4%) | −0.233 | 1875 (59.8%) | 310 (77.5%) | 1565 (57.2%) | −0.418 |
Mild ED | 34 (12.1%) | >20 | <20 | 0.084 | 191 (6.1%) | 31 (7.8%) | 160 (5.8%) | 0.080 |
Moderate | 36 (12.8%) | >20 | <20 | 0.203 | 849 (27.1%) | 51 (12.8%) | 798 (29.2%) | 0.374 |
Severe | < 20 | <20 | <20 | 0.079 | 57 (1.8%) | < 20 | > 20 | 0.070 |
Mortality / hospice | < 20 | < 20 | <20 | 164 (5.2%) | < 20 | > 20 | ||
(B) | ||||||||
PCOS | Prediabetes | |||||||
All | Metformin | Ondansentron | Cohen’s D | All | Metformin | Ondansentron | Cohen’s D | |
n | 501 | 192 | 309 | 8015 | 397 | 7618 | ||
Mild | 270 (53.9%) | 158 (82.3%) | 112 (36.2%) | −1.040* | 1383 (17.3%) | 326 (82.1%) | 1057 (13.9%) | −1.963* |
Mild ED | 93 (18.6%) | 21 (10.9%) | 72 (23.3%) | 0.324 | 889 (11.1%) | 30 (7.6%) | 859 (11.3%) | 0.119 |
Moderate | 132 (26.3%) | < 20 | > 20 | 0.827* | 4711 (58.8%) | 34 (8.6%) | 4677 (61.4%) | 1.108* |
Severe | < 20 | < 20 | < 20 | 0.131 | 328 (4.1%) | < 20 | > 20 | 0.179 |
Mortality/ hospice | < 20 | < 20 | < 20 | 704 (8.8%) | < 20 | > 20 |

4. Discussion
- Luc K.
- Schramm-Luc A.
- Guzik T.J.
- Mikolajczyk T.P.
5. Limitations
- Kim S.-Y.
- Yoo D.-M.
- Min C.-Y.
- Choi H.-G.
6. Conclusion
Funding
Declaration of Competing Interest
Acknowledgements
Appendix A. Supplementary data
- Supplementary data 1
- Supplementary data 2
References
Fischer W, Eron JJ, Holman W, et al. Molnupiravir, an Oral Antiviral Treatment for COVID-19. medRxiv [Internet] 2021; Available from: http://dx.doi.org/10.1101/2021.06.17.21258639.
- The immunology of COVID-19: is immune modulation an option for treatment?.Lancet Rheumatol. 2020; 2: e428-e436
Singh TU, Parida S, Lingaraju MC, Kesavan M, Kumar D, Singh RK. Drug repurposing approach to fight COVID-19. Pharmacol Rep 2020;72(6):1479–508.
Dotolo S, Marabotti A, Facchiano A, Tagliaferri R. A review on drug repurposing applicable to COVID-19. Brief Bioinform 2021;22(2):726–41.
- Metformin is associated with lower hospitalizations, mortality and severe coronavirus infection among elderly medicare minority patients in 8 states in USA.Diabetes Metab Syndr. 2021; 15: 513-518
- Outpatient metformin use is associated with reduced severity of COVID-19 disease in adults with overweight or obesity.J Med Virol. 2021; 93: 4273-4279
- Diabetes, metformin and the clinical course of covid-19: outcomes, mechanisms and suggestions on the therapeutic use of metformin.Front Pharmacol. 2022; 13784459
- Immunomodulatory and antiviral activity of metformin and its potential implications in treating coronavirus disease 2019 and lung injury.Front Immunol. 2020; 11: 2056
- Randomized trial of metformin, ivermectin, and fluvoxamine for covid-19.N Engl J Med. 2022; 387: 599-610
- Therapeutic potential of metformin in COVID-19: reasoning for its protective role.Trends Microbiol. 2021; 29: 894-907
- Metformin in COVID-19: A possible role beyond diabetes.Diabetes Res Clin Pract. 2020; 164: 108183
- COVID-19 pandemic, coronaviruses, and diabetes mellitus.Am J Physiol Endocrinol Metab. 2020; 318: E736-E741
- Frequency of prediabetes in women with polycystic ovary syndrome.Med Arh. 2013; 67: 282
Tabák AG, Herder C, Rathmann W, Brunner EJ, Kivimäki M. Prediabetes: a high-risk state for diabetes development. Lancet 2012;379(9833):2279–90.
American Diabetes Association. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2021. Diabetes Care 2021;44(Suppl 1):S15–33.
- Prediabetes and what it means: the epidemiological evidence.Annu Rev Public Health. 2021; 42: 59-77
Diabetes Prevention Program Research Group, Knowler WC, Fowler SE, et al. 10-year follow-up of diabetes incidence and weight loss in the Diabetes Prevention Program Outcomes Study. Lancet 2009;374(9702):1677–86.
- Polycystic ovary syndrome.Nat Rev Dis Primers. 2016; 2
Bozdag G, Mumusoglu S, Zengin D, Karabulut E, Yildiz BO. The prevalence and phenotypic features of polycystic ovary syndrome: a systematic review and meta-analysis. Hum Reprod 2016;31(12):2841–55.
- PCOS remains a diagnosis of exclusion: a concise review of key endocrinopathies to exclude.Clin Endocrinol. 2017; 86: 1-6
Vitek W, Alur S, Hoeger KM. Off-label drug use in the treatment of polycystic ovary syndrome. Fertil Steril 2015;103(3):605–11.
Diamanti-Kandarakis E. Insulin resistance in PCOS. Endocrine 2006;30(1):13–7.
Dunaif A, Segal KR, Futterweit W, Dobrjansky A. Profound peripheral insulin resistance, independent of obesity, in polycystic ovary syndrome. Diabetes 1989;38(9):1165–74.
Morales AJ, Laughlin GA, Bützow T, Maheshwari H, Baumann G, Yen SS. Insulin, somatotropic, and luteinizing hormone axes in lean and obese women with polycystic ovary syndrome: common and distinct features. J Clin Endocrinol Metab 1996;81(8):2854–64.
Legro RS, Arslanian SA, Ehrmann DA, et al. Diagnosis and treatment of polycystic ovary syndrome: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 2013;98(12):4565–92.
Voss EA, Makadia R, Matcho A, et al. Feasibility and utility of applications of the common data model to multiple, disparate observational health databases. J Am Med Inform Assoc 2015;22(3):553–64.
Haendel MA, Chute CG, Bennett TD, et al. The National COVID Cohort Collaborative (N3C): Rationale, design, infrastructure, and deployment. J Am Med Inform Assoc 2021;28(3):427–43.
Bennett TD, Moffitt RA, Hajagos JG, et al. The National COVID Cohort Collaborative: Clinical Characterization and Early Severity Prediction. medRxiv [Internet] 2021;Available from: http://dx.doi.org/10.1101/2021.01.12.21249511.
- Diagnosis and classification of diabetes mellitus.Diabetes Care. 2010; 33: S62-S69
Hripcsak G, Duke JD, Shah NH, et al. Observational health data sciences and informatics (OHDSI): Opportunities for observational researchers. Stud Health Technol Inform 2015;216:574–8.
- New formulations of levothyroxine in the treatment of hypothyroidism: trick or treat?.Thyroid. 2021; 31: 193-201
Milne RJ, Heel RC. Ondansetron. Therapeutic use as an antiemetic. Drugs 1991;41(4):574–95.
Bayat V, Ryono R, Phelps S, et al. Reduced mortality with ondansetron use in SARS-CoV-2-infected inpatients. Open Forum Infect Dis 2021;8(7):ofab336.
- Hypothesis-agnostic network-based analysis of real-world data suggests ondansetron is associated with lower COVID-19 any cause mortality.Drugs Real World Outcomes. 2022; 9: 359-375
- Patient cohort identification on time series data using the OMOP common data model.Appl Clin Inform. 2021; 12: 57-64
Stekhoven DJ, Bühlmann P. MissForest--non-parametric missing value imputation for mixed-type data. Bioinformatics 2012;28(1):112–8.
Mayer M. Fast imputation of missing values [R package missRanger version 2.1.3]. 2021 [cited 2022 Jun 14];Available from: https://CRAN.R-project.org/package=missRanger.
- Flexible imputation of missing data.2nd ed. CRC Press, 2018
Casiraghi E, Wong R, Hall M, et al. A methodological framework for the comparative evaluation of multiple imputation methods: multiple imputation of race, ethnicity and body mass index in the U.S. National COVID Cohort Collaborative [Internet]. arXiv [cs.AI]. 2022;Available from: http://arxiv.org/abs/2206.06444.
- MatchThem: Matching and weighting after multiple imputation.R J. 2021; 13: 228
- Multiple imputation for nonresponse in surveys.Wiley, New York1987
WHO working group on the clinical characterisation and management of COVID-19 infection. A minimal common outcome measure set for COVID-19 clinical research. Lancet Infect Dis 2020;20(8):e192–7.
The R Stats Package [Internet]. [cited 2022 Jun 14];Available from: https://stat.ethz.ch/R-manual/R-devel/library/stats/html/00Index.html.
Fox J. Applied regression analysis, linear models, and related methods. 1997;597. Available from: https://psycnet.apa.org/fulltext/1997-08857-000.pdf.
Fox J, Monette G. Generalized collinearity diagnostics. J Am Stat Assoc 1992;87(417):178–83.
Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis 1987;40(5):373–83.
VanderWeele TJ, Ding P. Sensitivity analysis in observational research: introducing the E-value. Ann Intern Med 2017;167(4):268–74.
- Little’s test of missing completely at random.Stata J. 2013; 13: 795-809
Daniel R, Zhang J, Farewell D. Making apples from oranges: Comparing noncollapsible effect estimators and their standard errors after adjustment for different covariate sets. Biom J 2021;63(3):528–57.
- Noncollapsibility and its role in quantifying confounding bias in logistic regression.BMC Med Res Methodol. 2021; 21: 136
- Gastrointestinal symptoms are associated with severity of coronavirus disease 2019: a systematic review and meta-analysis.Eur J Gastroenterol Hepatol. 2022; 34: 168-176
- Gastrointestinal symptoms associated with unfavorable prognosis of COVID-19 patients: a retrospective study.Front Med. 2020; 7608259
- Metformin use is associated with reduced mortality rate from coronavirus disease 2019 (COVID-19) infection.Obes Med. 2020; 19: 100290
Hajjar J, Habra MA, Naing A. Metformin: an old drug with new potential. Expert Opin Investig Drugs 2013;22(12):1511–7.
- Role of AMP-activated protein kinase in mechanism of metformin action.J Clin Invest. 2001; 108: 1167-1174
- Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state.J Clin Invest. 2010; 120: 2355-2369
- The ROS production induced by a reverse-electron flux at respiratory-chain complex 1 is hampered by metformin.J Bioenerg Biomembr. 2006; 38: 33-42
- Oxidative stress and inflammatory markers in prediabetes and diabetes.J Physiol Pharmacol [Internet]. 2019; 70 (Available from:)https://doi.org/10.26402/jpp.2019.6.01
- Polycystic ovary syndrome (PCOS) and COVID-19: an overlooked female patient population at potentially higher risk during the COVID-19 pandemic.BMC Med. 2020; 18: 220
de Medeiros SF, Yamamoto MMW, de Medeiros MAS, Yamamoto AKLW, Barbosa BB. Polycystic ovary syndrome and risks for COVID-19 infection: A comprehensive review. Rev Endocr Metab Disord 2022;23(2):251–64.
Subramanian A, Anand A, Adderley NJ, et al. Increased COVID-19 infections in women with polycystic ovary syndrome: a population-based study. Eur J Endocrinol 2021;184(5):637–45.
Sosibo AM, Khathi A. Pre-diabetes and COVID-19, could we be missing the silent killer? Exp Biol Med 2021;246(4):369–70.
- Association between pre-diabetes and microvascular and macrovascular disease in newly diagnosed type 2 diabetes.BMJ Open Diabetes Res Care [Internet]. 2020; 8: e001061
- Levothyroxine.StatPearls Publishing, 2021
Hariyanto TI, Kurniawan A. Thyroid disease is associated with severe coronavirus disease 2019 (COVID-19) infection. Diabetes Metab Syndr 2020;14(5):1429–30.
- The prognostic values of thyroid disorders in predicting COVID-19 composite poor outcomes: A systematic review and meta-analysis.Diabetes Metab Syndr. 2022; 16: 102464
- ENDOCRINOLOGY IN THE TIME OF COVID-19: Management of hyperthyroidism and hypothyroidism.Eur J Endocrinol. 2020; 183: G33-G39
- The effects of previous thyroid disease on the susceptibility to, morbidity of, and mortality due to COVID-19: A nationwide cohort study in South Korea.J Clin Med Res [Internet]. 2021; 10 (Available from:)https://doi.org/10.3390/jcm10163522
Article info
Publication history
Identification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy