Abstract
Aims
Methods
Results
Conclusions
Keywords
Abbreviations:
COVID-19 (coronavirus disease 2019), SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), T1D (type 1 diabetes mellitus), T2D (type 2 diabetes mellitus), ICU (intensive care unit), EHR (electronic health record), ED (emergency department), IQE (index qualifying encounter), SUPREME-DM (SUrveillance, PREvention, and ManagEment of Diabetes Mellitus), ICD-9 (International Classification of Disease, 9th Revision), ICD-10 (International Classification of Disease, 10th Revision), BMI (body mass index), ECS (Elixhauser comorbidity score), HbA1c (hemoglobin A1c), DKA (diabetic ketoacidosis), pFDR (positive false discovery rate), AOR (adjusted odds ratio), CI (confidence interval), AAPI/AIAN/NHO (Asian American/Pacific Islander, American Indian/Alaska Native, Non-Hispanic Other)1. Introduction
- Kompaniyets L.
- Pennington A.F.
- Goodman A.B.
- Rosenblum H.G.
- Belay B.
- Ko J.Y.
- et al.
- Mude W.
- Oguoma V.M.
- Nyanhanda T.
- Mwanri L.
- Njue C.
- Khanijahani A.
- Iezadi S.
- Gholipour K.
- Azami-Aghdash S.
- Naghibi D.
- Mude W.
- Oguoma V.M.
- Nyanhanda T.
- Mwanri L.
- Njue C.
- Khanijahani A.
- Iezadi S.
- Gholipour K.
- Azami-Aghdash S.
- Naghibi D.
- Mude W.
- Oguoma V.M.
- Nyanhanda T.
- Mwanri L.
- Njue C.
- Mude W.
- Oguoma V.M.
- Nyanhanda T.
- Mwanri L.
- Njue C.
- Khanijahani A.
- Iezadi S.
- Gholipour K.
- Azami-Aghdash S.
- Naghibi D.
2. Materials and methods
2.1 Study design and data source
2.2 Diabetes status definitions
- Nichols G.A.
- Desai J.
- Elston J.
- Lawrence J.M.
- O'Connor P.J.
- Pathak R.D.
Raebel MA, Schroeder EB, Goodrich G, et al. Mini-Sentinel statistical methods: Validating type 1 and type 2 diabetes mellitus in the Mini-Sentinel Distributed Database using the SUrveillance, PREvention, and ManagEment of Diabetes Mellitus (SUPREME-DM) DataLink. Available from: https://www.sentinelinitiative.org/sites/default/files/Methods/Mini-Sentinel_Methods_Validating-Diabetes-Mellitus_MSDD_Using-SUPREME-DM-DataLink.pdf [Accessed: August 9, 2022].
Raebel MA, Schroeder EB, Goodrich G, et al. Mini-Sentinel statistical methods: Validating type 1 and type 2 diabetes mellitus in the Mini-Sentinel Distributed Database using the SUrveillance, PREvention, and ManagEment of Diabetes Mellitus (SUPREME-DM) DataLink. Available from: https://www.sentinelinitiative.org/sites/default/files/Methods/Mini-Sentinel_Methods_Validating-Diabetes-Mellitus_MSDD_Using-SUPREME-DM-DataLink.pdf [Accessed: August 9, 2022].
Raebel MA, Schroeder EB, Goodrich G, et al. Mini-Sentinel statistical methods: Validating type 1 and type 2 diabetes mellitus in the Mini-Sentinel Distributed Database using the SUrveillance, PREvention, and ManagEment of Diabetes Mellitus (SUPREME-DM) DataLink. Available from: https://www.sentinelinitiative.org/sites/default/files/Methods/Mini-Sentinel_Methods_Validating-Diabetes-Mellitus_MSDD_Using-SUPREME-DM-DataLink.pdf [Accessed: August 9, 2022].

2.3 Patient characteristics
2.4 Outcome
2.5 Statistical analysis
- Ehwerhemuepha L.
- Gasperino G.
- Bischoff N.
- Taraman S.
- Chang A.
- Feaster W.
3. Results
3.1 Study population characteristics
Characteristic | Overall | No diabetes | Type 1 diabetes | Type 2 diabetes |
---|---|---|---|---|
Total, No. | 116,370 | 93,098 | 802 | 22,470 |
Age, years (median [IQR]) | 47.0 [32.0, 62.0] | 42.0 [30.0, 57.0] | 41.0 [29.0, 57.0] | 63.0 [53.0, 74.0] |
Age categories, years, n (%) | ||||
18–29 | 23,187 (19.9) | 22,628 (24.3) | 207 (25.8) | 352 (1.6) |
30–39 | 20,102 (17.3) | 18,907 (20.3) | 174 (21.7) | 1,021 (4.5) |
40–49 | 19,345 (16.6) | 16,578 (17.8) | 136 (17.0) | 2,631 (11.7) |
50–59 | 19,853 (17.1) | 14,816 (15.9) | 110 (13.7) | 4,927 (21.9) |
60–69 | 15,300 (13.1) | 9,457 (10.2) | 92 (11.5) | 5,751 (25.6) |
70–79 | 10,380 (8.9) | 5,666 (6.1) | 53 (6.6) | 4,661 (20.7) |
80–89 | 8,160 (7.0) | 5,017 (5.4) | 30 (3.7) | 3,113 (13.9) |
≥90 | 43 (0.0) | 29 (0.0) | 0 (0.0) | 14 (0.1) |
Gender, n (%) | ||||
Female | 62,103 (53.4) | 50,365 (54.1) | 385 (48.0) | 11,353 (50.5) |
Male | 53,888 (46.3) | 42,460 (45.6) | 413 (51.5) | 11,015 (49.0) |
Unknown | 379 (0.3) | 273 (0.3) | 4 (0.5) | 102 (0.5) |
Race/ethnicity, n (%) | ||||
Non-Hispanic, White | 32,323 (27.8) | 25,165 (27.0) | 313 (39.0) | 6,845 (30.5) |
Non-Hispanic, Black | 18,695 (16.1) | 13,903 (14.9) | 158 (19.7) | 4,634 (20.6) |
Non-Hispanic, Other | 2,618 (2.2) | 2,204 (2.4) | 8 (1.0) | 406 (1.8) |
Non-Hispanic, Unknown race | 1,649 (1.4) | 1,255 (1.3) | 21 (2.6) | 373 (1.7) |
Hispanic | 50,553 (43.4) | 41,764 (44.9) | 245 (30.5) | 8,544 (38.0) |
Asian or Pacific Islander | 2,362 (2.0) | 1,778 (1.9) | 14 (1.7) | 570 (2.5) |
American Indian or Alaska Native | 1,777 (1.5) | 1,336 (1.4) | 13 (1.6) | 428 (1.9) |
Unknown ethnicity, White | 1,846 (1.6) | 1,581 (1.7) | 12 (1.5) | 253 (1.1) |
Unknown ethnicity, Black | 571 (0.5) | 477 (0.5) | 2 (0.2) | 92 (0.4) |
Unknown ethnicity, Other race | 1,147 (1.0) | 959 (1.0) | 9 (1.1) | 179 (0.8) |
Unknown ethnicity/Unknown race | 2,829 (2.4) | 2,676 (2.9) | 7 (0.9) | 146 (0.6) |
BMI, kg/m2 (median [IQR]) | 29.3 [25.4, 34.5] | 29.0 [25.1, 33.9] | 26.5 [22.7, 32.0] | 31.2 [26.9, 37.0] |
BMI categories, kg/m2, n (%) | ||||
<18.5 | 1,533 (1.3) | 1,275 (1.4) | 40 (5.0) | 218 (1.0) |
18.5–24.9 | 20,506 (17.6) | 17,136 (18.4) | 274 (34.2) | 3,096 (13.8) |
25.0–29.9 | 30,704 (26.4) | 24,500 (26.3) | 209 (26.1) | 5,995 (26.7) |
30.0–34.9 | 22,757 (19.6) | 17,168 (18.4) | 132 (16.5) | 5,457 (24.3) |
35.0–39.9 | 12,248 (10.5) | 8,810 (9.5) | 69 (8.6) | 3,369 (15.0) |
≥40 | 10,913 (9.4) | 7,239 (7.8) | 54 (6.7) | 3,620 (16.1) |
Unknown | 17,709 (15.2) | 16,970 (18.2) | 24 (3.0) | 715 (3.2) |
Encounter type, n (%) | ||||
Emergency | 63,674 (54.7) | 57,040 (61.3) | 193 (24.1) | 6,441 (28.7) |
Admitted/Inpatient | 40,885 (35.1) | 24,854 (26.7) | 593 (73.9) | 15,438 (68.7) |
Urgent care encounter | 11,811 (10.1) | 11,204 (12.0) | 16 (2.0) | 591 (2.6) |
Length of stay (inpatient encounters only), days (median [IQR]) | 4.6 [2.3, 8.7] | 3.8 [2.0, 7.0] | 5.1 [2.6, 10.2] | 6.2 [3.1, 12.2] |
Length of stay categories (inpatient encounters only), days, n (%) | ||||
0–3 | 11,126 (9.6) | 8,048 (8.6) | 146 (18.2) | 2,932 (13.0) |
4–7 | 9,103 (7.8) | 5,678 (6.1) | 116 (14.5) | 3,309 (14.7) |
>7 | 19,795 (17.0) | 10,627 (11.4) | 323 (40.3) | 8,845 (39.4) |
Not applicable | 75,485 (64.9) | 68,244 (73.3) | 209 (26.1) | 7,032 (31.3) |
Unknown | 861 (0.7) | 501 (0.5) | 8 (1.0) | 352 (1.6) |
Intubated, n (%) | 7243 (6.2) | 2571 (2.8) | 113 (14.1) | 4559 (20.3) |
Intubation duration, days (median [IQR]) | 5.0 [1.0, 11.0] | 3.0 [0.0, 7.0] | 5.0 [2.0, 13.0] | 6.0 [2.0, 14.0] |
Intubation duration categories, days, n (%) | ||||
0–3 | 2929 (2.5) | 1388 (1.5) | 38 (4.7) | 1503 (6.7) |
4–7 | 1428 (1.2) | 492 (0.5) | 23 (2.9) | 913 (4.1) |
8–14 | 1372 (1.2) | 382 (0.4) | 27 (3.4) | 963 (4.3) |
>14 | 1238 (1.1) | 182 (0.2) | 18 (2.2) | 1038 (4.6) |
Not applicable | 109,403 (94.0) | 90,654 (97.4) | 696 (86.8) | 18,053 (80.3) |
In-hospital mortality, n (%) 1 | 2793 (2.4) | 902 (1.0) | 37 (4.6) | 1854 (8.3) |
Payer, n (%) | ||||
Private insurance | 44,539 (38.3) | 38,836 (41.7) | 252 (31.4) | 5,451 (24.3) |
Public insurance | 32,902 (28.3) | 22,111 (23.8) | 292 (36.4) | 10,499 (46.7) |
Government/Military | 2,580 (2.2) | 2,200 (2.4) | 14 (1.7) | 366 (1.6) |
Charity/Other | 1,468 (1.3) | 1,212 (1.3) | 9 (1.1) | 247 (1.1) |
Self-pay | 13,466 (11.6) | 12,480 (13.4) | 44 (5.5) | 942 (4.2) |
Unknown | 21,415 (18.4) | 16,259 (17.5) | 191 (23.8) | 4,965 (22.1) |
Census Division, n (%) | ||||
New England | 1,764 (1.5) | 1,341 (1.4) | 25 (3.1) | 398 (1.8) |
Middle Atlantic | 21,416 (18.4) | 17,050 (18.3) | 152 (19.0) | 4,214 (18.8) |
South Atlantic | 38,009 (32.7) | 32,046 (34.4) | 165 (20.6) | 5,798 (25.8) |
East North Central | 4,869 (4.2) | 3,618 (3.9) | 48 (6.0) | 1,203 (5.4) |
East South Central | 1,977 (1.7) | 1,646 (1.8) | 19 (2.4) | 312 (1.4) |
West North Central | 5,036 (4.3) | 3,983 (4.3) | 55 (6.9) | 998 (4.4) |
West South Central | 12,865 (11.1) | 9,475 (10.2) | 116 (14.5) | 3,274 (14.6) |
Mountain | 15,136 (13.0) | 11,822 (12.7) | 140 (17.5) | 3,174 (14.1) |
Pacific | 15,298 (13.1) | 12,117 (13.0) | 82 (10.2) | 3,099 (13.8) |
Health system: Bed size range, n (%) | ||||
6–99 | 1,379 (1.2) | 1,025 (1.1) | 6 (0.7) | 348 (1.5) |
100–199 | 806 (0.7) | 661 (0.7) | 1 (0.1) | 144 (0.6) |
200–299 | 2,013 (1.7) | 1,615 (1.7) | 16 (2.0) | 382 (1.7) |
300–499 | 8,326 (7.2) | 6,364 (6.8) | 74 (9.2) | 1,888 (8.4) |
500–999 | 22,714 (19.5) | 17,455 (18.7) | 200 (24.9) | 5,059 (22.5) |
≥1,000 | 81,132 (69.7) | 65,978 (70.9) | 505 (63.0) | 14,649 (65.2) |
Health system: Segment served, n (%) | ||||
Integrated Delivery Network | 89,176 (76.6) | 71,968 (77.3) | 566 (70.6) | 16,642 (74.1) |
Regional Hospital | 14,237 (12.2) | 10,721 (11.5) | 115 (14.3) | 3,401 (15.1) |
Academic | 11,324 (9.7) | 9,133 (9.8) | 106 (13.2) | 2,085 (9.3) |
Community Hospital | 825 (0.7) | 617 (0.7) | 3 (0.4) | 205 (0.9) |
Community Healthcare | 361 (0.3) | 251 (0.3) | 2 (0.2) | 108 (0.5) |
Children | 334 (0.3) | 316 (0.3) | 10 (1.2) | 8 (0.0) |
Critical Access | 113 (0.1) | 92 (0.1) | 0 (0.0) | 21 (0.1) |
HbA1c, % (median [IQR]) | 6.7 [5.7, 8.4] | 5.5 [5.2, 5.8] | 9.5 [7.7, 12.0] | 7.5 [6.5, 9.3] |
HbA1c, mmol/mol (median [IQR]) | 50 [39,68] | 37 [33,40] | 80 [61,108] | 58 [48,78] |
Concurrent hyperglycemia and acidosis, n (%) | 2,452 (2.1) | 0 (0.0) | 182 (22.7) | 2,270 (10.1) |
Vitamin D deficiency/insufficiency, n (%) 2 | 3,227 (2.8) | 1,528 (1.6) | 84 (10.5) | 1,615 (7.2) |
Low vitamin D, lab result not present, n (%) 3 | 1,572 (48.7) | 747 (48.9) | 38 (45.2) | 787 (48.7) |
Serum 25-hydroxyvitamin D result present, n (%) 4 | 2,753 (2.4) | 1,347 (1.4) | 55 (6.9) | 1,351 (6.0) |
Serum 25-hydroxyvitamin D, ng/mL (median [IQR]) Y5 | 27.7 [18.3, 39.1] | 28.8 [19.5, 39.3] | 22.3 [12.9, 28.9] | 27.1 [17.8, 39.2] |
Serum 25-hydroxyvitamin D < 20 ng/mL, n (%) | 842 (0.7) | 375 (0.4) | 25 (3.1) | 442 (2.0) |
Serum 25-hydroxyvitamin D 20–30 ng/mL, n (%) | 813 (0.7) | 406 (0.4) | 21 (2.6) | 386 (1.7) |
Elixhauser comorbidity score (median [IQR]) | 0.0 [0.0, 6.0] | 0.0 [0.0, 5.0] | 8.0 [3.0, 19.0] | 10.0 [3.0, 19.0] |
Elixhauser comorbidity groups, n (median [IQR]) | 1.0 [0.0, 4.0] | 1.0 [0.0, 2.0] | 5.0 [3.0, 8.0] | 6.0 [4.0, 8.0] |
EC - Congestive heart failure, n (%) | 9,347 (8.0) | 3,209 (3.4) | 168 (20.9) | 5,970 (26.6) |
EC - Cardiac arrhythmias, n (%) | 20,126 (17.3) | 11,452 (12.3) | 304 (37.9) | 8,370 (37.2) |
EC - Valvular disease, n (%) | 5,418 (4.7) | 2,387 (2.6) | 83 (10.3) | 2,948 (13.1) |
EC - Pulmonary circulation disorders, n (%) | 4,230 (3.6) | 1,903 (2.0) | 78 (9.7) | 2,249 (10.0) |
EC - Peripheral vascular disorders, n (%) | 5,623 (4.8) | 2,075 (2.2) | 95 (11.8) | 3,453 (15.4) |
EC - Hypertension, n (%) | 44,029 (37.8) | 23,672 (25.4) | 510 (63.6) | 19,847 (88.3) |
EC - Paralysis, n (%) | 1,714 (1.5) | 684 (0.7) | 25 (3.1) | 1,005 (4.5) |
EC - Neurodegenerative disorders, n (%) | 5,372 (4.6) | 3,096 (3.3) | 113 (14.1) | 2,163 (9.6) |
EC - Chronic pulmonary disease, n (%) | 21,765 (18.7) | 14,097 (15.1) | 181 (22.6) | 7,487 (33.3) |
EC - Hypothyroidism, n (%) | 9,501 (8.2) | 5,375 (5.8) | 151 (18.8) | 3,975 (17.7) |
EC - Renal failure, n (%) | 10,460 (9.0) | 3,096 (3.3) | 273 (34.0) | 7,091 (31.6) |
EC - Liver disease, n (%) | 8,221 (7.1) | 4,247 (4.6) | 122 (15.2) | 3,852 (17.1) |
EC - Peptic ulcer disease (no bleeding), n (%) | 1,269 (1.1) | 583 (0.6) | 25 (3.1) | 661 (2.9) |
EC - AIDS/HIV, n (%) | 620 (0.5) | 459 (0.5) | 5 (0.6) | 156 (0.7) |
EC - Lymphoma, n (%) | 482 (0.4) | 278 (0.3) | 9 (1.1) | 195 (0.9) |
EC - Metastatic cancer, n (%) | 1,060 (0.9) | 561 (0.6) | 9 (1.1) | 490 (2.2) |
EC - Solid tumor without metastasis, n (%) | 3,915 (3.4) | 2,045 (2.2) | 32 (4.0) | 1,838 (8.2) |
EC - RA/collagen vascular diseases, n (%) | 2,934 (2.5) | 1,723 (1.9) | 40 (5.0) | 1,171 (5.2) |
EC - Coagulopathy, n (%) | 7,356 (6.3) | 3,553 (3.8) | 136 (17.0) | 3,667 (16.3) |
EC - Obesity, n (%) | 23,118 (19.9) | 12,443 (13.4) | 221 (27.6) | 10,454 (46.5) |
EC - Weight loss, n (%) | 5,490 (4.7) | 2,498 (2.7) | 165 (20.6) | 2,827 (12.6) |
EC - Fluid and electrolyte disorders, n (%) | 33,550 (28.8) | 18,512 (19.9) | 615 (76.7) | 14,423 (64.2) |
EC - Blood loss anemia, n (%) | 1,192 (1.0) | 513 (0.6) | 27 (3.4) | 652 (2.9) |
EC - Deficiency anemia, n (%) | 5,842 (5.0) | 2,714 (2.9) | 152 (19.0) | 2,976 (13.2) |
EC - Alcohol abuse, n (%) | 375 (0.3) | 243 (0.3) | 8 (1.0) | 124 (0.6) |
EC - Drug abuse, n (%) | 5,958 (5.1) | 4,239 (4.6) | 145 (18.1) | 1,574 (7.0) |
EC - Psychosis, n (%) | 2,544 (2.2) | 1,600 (1.7) | 36 (4.5) | 908 (4.0) |
EC - Depression, n (%) | 13,035 (11.2) | 7,615 (8.2) | 245 (30.5) | 5,175 (23.0) |
Model | Characteristic | Adjusted Odds Ratio (95% CI)* | q-value |
---|---|---|---|
Elixhauser comorbidity score | |||
Diabetes status No diabetes | 1 [Reference] | ||
Type 1 diabetes | 5.06 (4.23–6.06) | <0.001 | |
Type 2 diabetes | 2.16 (2.07–2.25) | <0.001 | |
Age (years) | |||
18–29 | 1 [Reference] | ||
30–39 | 1.16 (1.10–1.22) | <0.001 | |
40–49 | 1.32 (1.25–1.39) | <0.001 | |
50–59 | 1.86 (1.76–1.95) | <0.001 | |
60–69 | 2.59 (2.45–2.74) | <0.001 | |
70–79 | 3.48 (3.25–3.72) | <0.001 | |
80+ | 6.22 (5.75–6.72) | <0.001 | |
Sex | |||
Female | 1 [Reference] | ||
Male | 1.22 (1.18–1.25) | <0.001 | |
Race and ethnicity | |||
Non-Hispanic White | 1 [Reference] | ||
Non-Hispanic Black | 0.83 (0.79–0.87) | <0.001 | |
Hispanic | 0.84 (0.80–0.87) | <0.001 | |
AAPI/AIAN/NHO | 1.06 (1.00–1.13) | 0.068 | |
Payer | |||
Private insurance | 1 [Reference] | ||
Public insurance | 1.40 (1.33–1.48) | <0.001 | |
Government/Military | 0.91 (0.79–1.05) | 0.291 | |
Charity/Other | 1.10 (0.94–1.28) | 0.345 | |
Self-pay | 0.70 (0.65–0.76) | <0.001 | |
BMI (kg/m2) | |||
18.5–24.9 | 1 [Reference] | ||
<18.5 | 1.22 (1.08–1.39) | 0.003 | |
25.0–29.9 | 1.03 (0.99–1.08) | 0.217 | |
30.0–34.9 | 1.15 (1.10–1.21) | <0.001 | |
35.0–39.9 | 1.31 (1.24–1.39) | <0.001 | |
>=40 | 1.71 (1.61–1.81) | <0.001 | |
Census division | |||
West South Central | 1 [Reference] | ||
East North Central | 1.09 (0.54–2.21) | 0.832 | |
East South Central | 1.67 (0.56–5.01) | 0.447 | |
Middle Atlantic | 1.58 (0.56–4.41) | 0.469 | |
Mountain | 1.17 (0.51–2.66) | 0.758 | |
New England | 1.59 (0.65–3.92) | 0.398 | |
Pacific | 0.87 (0.38–2.03) | 0.793 | |
South Atlantic | 0.74 (0.29–1.86) | 0.592 | |
West North Central | 0.78 (0.39–1.55) | 0.553 | |
Vitamin D deficiency/insufficiency | 1.71 (1.56–1.87) | <0.001 | |
Elixhauser comorbidity score | 1.08 (1.08–1.08) | <0.001 | |
Elixhauser comorbidities | |||
Diabetes status No diabetes | 1 [Reference] | ||
Type 1 diabetes | 2.69 (2.23–3.25) | <0.001 | |
Type 2 diabetes | 1.48 (1.41–1.55) | <0.001 | |
Age (years) | |||
18–29 | 1 [Reference] | ||
30–39 | 1.07 (1.02–1.13) | 0.018 | |
40–49 | 1.16 (1.10–1.23) | <0.001 | |
50–59 | 1.58 (1.50–1.67) | <0.001 | |
60–69 | 2.16 (2.04–2.30) | <0.001 | |
70–79 | 2.87 (2.67–3.09) | <0.001 | |
80+ | 4.78 (4.39–5.20) | <0.001 | |
Sex | |||
Female | 1 [Reference] | ||
Male | 1.19 (1.16–1.23) | <0.001 | |
Race and ethnicity | |||
Non-Hispanic White | 1 [Reference] | ||
Non-Hispanic Black | 0.80 (0.76–0.85) | <0.001 | |
Hispanic | 0.90 (0.86–0.94) | <0.001 | |
AAPI/AIAN/NHO | 1.10 (1.03–1.17) | 0.005 | |
Payer | |||
Private insurance | 1 [Reference] | ||
Public insurance | 1.25 (1.19–1.32) | <0.001 | |
Government/Military | 0.86 (0.74–1.00) | 0.076 | |
Charity/Other | 1.08 (0.91–1.29) | 0.447 | |
Self-pay | 0.71 (0.66–0.76) | <0.001 | |
BMI (kg/m2) | |||
18.5–24.9 | 1 [Reference] | ||
<18.5 | 1.14 (1.00–1.30) | 0.073 | |
25.0–29.9 | 1.06 (1.02–1.11) | 0.013 | |
30.0–34.9 | 1.16 (1.10–1.22) | <0.001 | |
35.0–39.9 | 1.28 (1.21–1.36) | <0.001 | |
>=40 | 1.54 (1.45–1.64) | <0.001 | |
Census division | |||
West South Central | 1 [Reference] | ||
East North Central | 1.36 (0.66–2.82) | 0.484 | |
East South Central | 3.01 (1.07–8.51) | 0.063 | |
Middle Atlantic | 2.71 (1.04–7.05) | 0.067 | |
Mountain | 1.55 (0.67–3.55) | 0.393 | |
New England | 2.21 (0.90–5.39) | 0.126 | |
Pacific | 1.47 (0.71–3.06) | 0.393 | |
South Atlantic | 1.40 (0.67–2.95) | 0.456 | |
West North Central | 1.09 (0.54–2.20) | 0.834 | |
Vitamin D deficiency/insufficiency | 1.46 (1.33–1.61) | <0.001 | |
Congestive heart failure | 1.37 (1.28–1.47) | <0.001 | |
Cardiac arrhythmias | 1.30 (1.24–1.36) | <0.001 | |
Valvular disease | 0.91 (0.83–0.99) | 0.049 | |
Pulmonary circulation disorders | 1.93 (1.76–2.13) | <0.001 | |
Peripheral vascular disorders | 0.92 (0.85–1.00) | 0.063 | |
Hypertension | 1.39 (1.33–1.45) | <0.001 | |
Paralysis | 1.73 (1.50–2.01) | <0.001 | |
Neurodegenerative disorders | 1.41 (1.31–1.53) | <0.001 | |
Chronic pulmonary disease | 0.95 (0.91–0.99) | 0.025 | |
Hypothyroidism | 1.08 (1.02–1.14) | 0.020 | |
Renal failure | 1.42 (1.33–1.52) | <0.001 | |
Liver disease | 1.05 (0.98–1.11) | 0.215 | |
Peptic ulcer disease (no bleeding) | 0.79 (0.68–0.93) | 0.006 | |
AIDS/HIV | 1.42 (1.17–1.72) | 0.001 | |
Lymphoma | 1.06 (0.83–1.36) | 0.687 | |
Metastatic cancer | 1.71 (1.41–2.08) | <0.001 | |
Solid tumor without metastasis | 0.99 (0.90–1.09) | 0.913 | |
RA/collagen vascular diseases | 0.96 (0.87–1.06) | 0.484 | |
Coagulopathy | 2.91 (2.70–3.13) | <0.001 | |
Weight loss | 1.61 (1.48–1.76) | <0.001 | |
Fluid and electrolyte disorders | 3.75 (3.61–3.88) | <0.001 | |
Blood loss anemia | 1.02 (0.86–1.21) | 0.832 | |
Deficiency anemia | 1.32 (1.22–1.43) | <0.001 | |
Alcohol abuse | 0.85 (0.65–1.12) | 0.343 | |
Drug abuse | 1.20 (1.11–1.28) | <0.001 | |
Psychosis | 1.25 (1.12–1.38) | <0.001 | |
Depression | 0.90 (0.86–0.95) | <0.001 |
3.2 Correlates of hospitalization in patients with SARS-CoV-2 infection
![]() |
Characteristic | Adjusted Odds Ratio (95% CI) | q-value |
---|---|---|
Type 2 diabetes | 0.65 (0.53–0.78) | <0.001 |
Age (years) | ||
18–29 | 1 [Reference] | |
30–39 | 1.55 (1.23–1.95) | <0.001 |
40–49 | 1.64 (1.32–2.03) | <0.001 |
50–59 | 2.36 (1.91–2.91) | <0.001 |
60–69 | 3.69 (2.98–4.55) | <0.001 |
70–79 | 5.41 (4.34–6.74) | <0.001 |
80+ | 9.16 (7.25–11.57) | <0.001 |
Sex | ||
Female | 1 [Reference] | |
Male | 1.40 (1.31–1.49) | <0.001 |
Race and ethnicity | ||
Non-Hispanic White | 1 [Reference] | |
Non-Hispanic Black | 0.94 (0.85–1.04) | 0.345 |
Hispanic | 0.72 (0.66–0.79) | <0.001 |
AAPI/AIAN/NHO | 0.92 (0.81–1.05) | 0.334 |
Payer | ||
Private insurance | 1 [Reference] | |
Public insurance | 1.32 (1.21–1.45) | <0.001 |
Government/Military | 1.07 (0.81–1.41) | 0.696 |
Charity/Other | 1.20 (0.87–1.64) | 0.350 |
Self-pay | 0.79 (0.68–0.91) | 0.003 |
BMI (kg/m2) | ||
18.5–24.9 | 1 [Reference] | |
<18.5 | 1.89 (1.27–2.80) | 0.003 |
25.0–29.9 | 0.83 (0.75–0.93) | 0.002 |
30.0–34.9 | 0.74 (0.67–0.83) | <0.001 |
35.0–39.9 | 0.83 (0.73–0.94) | 0.005 |
>=40 | 1.04 (0.92–1.18) | 0.553 |
Census division | ||
West South Central | 1 [Reference] | |
East North Central | 1.18 (0.59–2.35) | 0.702 |
East South Central | 3.67 (1.35–9.97) | 0.019 |
Middle Atlantic | 2.38 (1.01–5.58) | 0.073 |
Mountain | 1.24 (0.56–2.72) | 0.667 |
New England | 1.54 (0.63–3.78) | 0.436 |
Pacific | 1.33 (0.66–2.67) | 0.505 |
South Atlantic | 1.36 (0.69–2.66) | 0.456 |
West North Central | 0.77 (0.40–1.50) | 0.526 |
Vitamin D deficiency/insufficiency | 1.52 (1.33–1.73) | <0.001 |
Concurrent hyperglycemia and acidosis | 11.50 (9.31–14.20) | <0.001 |
Hemoglobin A1c* | 1.05 (1.04–1.07) | <0.001 |
3.3 Interaction effects as correlates of hospitalization in patients with suspected or confirmed COVID-19
3.4 Elixhauser comorbidities as correlates of hospitalization in patients with SARS-CoV-2 infection
3.5 Correlates of hospitalization in patients with diabetes with SARS-CoV-2 infection
4. Discussion
- Kompaniyets L.
- Pennington A.F.
- Goodman A.B.
- Rosenblum H.G.
- Belay B.
- Ko J.Y.
- et al.
4.1 Entire study cohort
- Mude W.
- Oguoma V.M.
- Nyanhanda T.
- Mwanri L.
- Njue C.
- Khanijahani A.
- Iezadi S.
- Gholipour K.
- Azami-Aghdash S.
- Naghibi D.
- Mude W.
- Oguoma V.M.
- Nyanhanda T.
- Mwanri L.
- Njue C.
- Kompaniyets L.
- Pennington A.F.
- Goodman A.B.
- Rosenblum H.G.
- Belay B.
- Ko J.Y.
- et al.
- Newton S.
- Zollinger B.
- Freeman J.
- Moran S.
- Helfand A.
- Authelet K.
- et al.
- Ghasemian R.
- Shamshirian A.
- Heydari K.
- Malekan M.
- Alizadeh‐Navaei R.
- Ebrahimzadeh M.A.
- et al.
4.2 Subset of individuals with diabetes
4.3 Strengths and limitations
4.4 Conclusion
Data statement
Funding source
CRediT authorship contribution statement
Declaration of Competing Interest
Acknowledgments
Appendix A. Supplementary data
- Supplementary data 1
References
Johns Hopkins University & Medicine. Coronavirus resource center. Available from: https://coronavirus.jhu.edu/ [Accessed: August 9, 2022].
Centers for Disease Control and Prevention. Underlying medical conditions associated with higher risk for severe COVID-19: Information for healthcare professionals. Available from: https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-care/underlyingconditions.html [Accessed: August 9, 2022].
- Diabetic patients with COVID-19 infection are at higher risk of ICU admission and poor short-term outcome.J Clin Virol. 2020; 127: 104354
- Type 1 and type 2 diabetes and COVID-19 related mortality in England: A whole population study.Lancet Diabetes Endocrinol. 2020; 8: 813-822https://doi.org/10.1016/S2213-8587(20)30272-2
- Risk factors associated with COVID-19 hospitalization and mortality: A large claims-based analysis among people with type 2 diabetes mellitus in the United States.Diabetes Ther. 2021; 12: 2223-2239
- Underlying medical conditions and severe illness among 540,667 adults hospitalized with COVID-19, March 2020-March 2021.Prev Chronic Dis. 2021; 18https://doi.org/10.5888/pcd18.210123
Dissanayake HA, De Silva NL, Sumanatilleke M, et al. Prognostic and therapeutic role of vitamin D in COVID-19: Systematic review and meta-analysis. J Clin Endocrinol Metab 2022; 107:1484-1502. DOI: 10.1210/clinem/dgab892.
- Ethnicity and clinical outcomes in COVID-19: A systematic review and meta-analysis.EClinicalMedicine. 2020; 29-30: 100630
- Racial and ethnic disparities in COVID-19-related infections, hospitalizations, and deaths: A systematic review.Ann Intern Med. 2021; 174: 362-373
- Racial disparities in COVID-19 pandemic cases, hospitalisations, and deaths: A systematic review and meta-analysis.J Glob Health. 2021; 11https://doi.org/10.7189/jogh.11.05015
- Disparities in COVID-19 outcomes by race, ethnicity, and socioeconomic status.JAMA Netw Open. 2021; 4: e2134147
- A systematic review of racial/ethnic and socioeconomic disparities in COVID-19.Int J Equity Health. 2021; 20https://doi.org/10.1186/s12939-021-01582-4
- Association between ethnicity and severe COVID-19 disease: A systematic review and meta-analysis.J Racial Ethn Health Disparities. 2021; 8: 1563-1572https://doi.org/10.1007/s40615-020-00921-5
- Cerner real-world data (CRWD) - A de-identified multicenter electronic health records database.Data Brief. 2022; 42: 108120
Cerner Corporation. Cerner Real-World Data (CRWD) 2020Q3 COVID database data dictionary. 2020.
- Construction of a multisite DataLink using electronic health records for the identification, surveillance, prevention, and management of diabetes mellitus: The SUPREME-DM project.Prev Chronic Dis. 2012; https://doi.org/10.5888/pcd9.110311
Raebel MA, Schroeder EB, Goodrich G, et al. Mini-Sentinel statistical methods: Validating type 1 and type 2 diabetes mellitus in the Mini-Sentinel Distributed Database using the SUrveillance, PREvention, and ManagEment of Diabetes Mellitus (SUPREME-DM) DataLink. Available from: https://www.sentinelinitiative.org/sites/default/files/Methods/Mini-Sentinel_Methods_Validating-Diabetes-Mellitus_MSDD_Using-SUPREME-DM-DataLink.pdf [Accessed: August 9, 2022].
- Automated detection and classification of type 1 versus type 2 diabetes using electronic health record data.Diabetes Care. 2013; 36: 914-921
Must A, Anderson SE. Body mass index in children and adolescents: Considerations for population-based applications. Int J Obes (Lond) 2006; 30:590-4. DOI: 10.1038/sj.ijo.0803300.
- A modification of the Elixhauser comorbidity measures into a point system for hospital death using administrative data.Med Care. 2009; 47: 626-633
- Coding algorithms for defining comorbidities in ICD-9-CM and ICD-10 administrative data.Med Care. 2005; 43: 1130-1139
- Comorbidity measures for use with administrative data.Med Care. 1998; 36: 8-27
- HealtheDataLab – a cloud computing solution for data science and advanced analytics in healthcare with application to predicting multi-center pediatric readmissions.BMC Med Inform Decis Mak. 2020; 20https://doi.org/10.1186/s12911-020-01153-7
- mice: Multivariate imputation by chained equations in R.J Stat Softw. 2011; 45: 1-67https://doi.org/10.18637/jss.v045.i03
- Approximations to the log-likelihood function in the nonlinear mixed-effects model.J Comput Graph Stat. 1995; 4: 12-35https://doi.org/10.1080/10618600.1995.10474663
Rubin D. Multiple imputation for nonresponse in surveys. New York: John Wiley & Sons, Inc.; 1987. Accessed August 9, 2022. Available from: https://onlinelibrary.wiley.com/doi/book/10.1002/9780470316696. DOI: 10.1002/9780470316696.
Storey J. The positive false discovery rate: A Bayesian interpretation and the q-value. Ann Stat 2003; 31:2013-35. DOI: https://doi.org/10.2307/3448445.
- The risk factors potentially influencing hospital admission in people with diabetes, following SARS-CoV-2 infection: A population-level analysis.Diabetes Ther. 2022; 13: 1007-1021
- Associations of type 1 and type 2 diabetes with COVID-19-related mortality in England: A whole-population study.Lancet Diabetes Endocrinol. 2020; 8: 813-822
- hospitalizations attributable to cardiometabolic conditions in the United States: A comparative risk assessment analysis.J Am Heart Assoc. 2019; 2021: 10https://doi.org/10.1161/jaha.120.019259
- Cardiovascular and renal disease burden in type 1 compared with type 2 diabetes: A two-country nationwide observational study.Diabetes Care. 2021; 44: 1211-1218
- Factors associated with clinical severity in emergency department patients presenting with symptomatic SARS-CoV-2 infection.J Am Coll Emerg Physicians Open. 2021; 2https://doi.org/10.1002/emp2.12453
O’Malley G, Ebekozien O, Desimone M, et al. COVID-19 hospitalization in adults with type 1 diabetes: Results from the T1D Exchange Multicenter Surveillance Study. J Clin Endocrinol Metab 2021; 106:e936-e942. DOI: https://doi.org/10.1210/clinem/dgaa825.
- Independent role of severe obesity as a risk factor for COVID-19 hospitalization: A Spanish population-based cohort study.Obesity. 2021; 29: 29-37
- Obesity as a risk factor for hospitalization in COronaVirus Disease-19 (COVID-19) patients: Analysis of the Tuscany regional database.Nutrition, Metabolism and Cardiovascular Diseases. 2021; 31: 769-773
- Vitamin D deficiency aggravates COVID-19: Systematic review and meta-analysis.Crit Rev Food Sci Nutr. 2022; 62: 1308-1316
- The role of vitamin D in the age of COVID-19: A systematic review and meta-analysis.Int J Clin Pract. 2021; 75e14675https://doi.org/10.1111/ijcp.14675
Jordan T, Siuka D, Rotovnik NK, et al. COVID-19 and Vitamin D – A systematic review. Zdr Varst 2022; 61:124-132. DOI: https://doi.org/10.2478/sjph-2022-0017.
- Factors affecting the incidence, progression, and severity of COVID-19 in type 1 diabetes mellitus.BioMed Res Int. 2021; 2021: 1-9
- Association between glycemic control and the outcome in hospitalized patients with COVID-19.Endocrine. 2022; 77: 213-220
- Glucometabolic changes influence hospitalization and outcome in patients with COVID-19: An observational cohort study.Diabetes Res Clin Pract. 2022; 187: 109880
- What is the role of admission HbA1c in managing COVID-19 patients?.J Diabetes. 2021; 13: 273-275https://doi.org/10.1111/1753-0407.13140
- Correlation of hemoglobin A1c and outcomes in patients hospitalized with COVID-19.Endocr Pract. 2021; 27: 1046-1051
Di Filippo L, Allora A, Doga M, et al. Vitamin D levels are associated with blood glucose and bmi in COVID-19 patients, predicting disease severity. J Clin Endocrinol Metab 2022; 107:e348-e360. DOI: https://doi.org/10.1210/clinem/dgab599.
Pietschmann P, Schernthaner G, Woloszczuk W. Serum osteocalcin levels in diabetes mellitus: Analysis of the type of diabetes and microvascular complications. Diabetologia 1988; 31:892-5. DOI: https://doi.org/10.1007/bf00265373.
- Vitamin D metabolism in the chronic streptozotocin-induced diabetic rat.Endocrinology. 1983; 113: 790-796
- Risk factors for COVID-19-related mortality in people with type 1 and type 2 diabetes in England: A population-based cohort study.Lancet Diabetes Endocrinol. 2020; 8: 823-833
- Obesity is a risk factor for severe COVID-19 infection.Circulation. 2020; 142: 4-6https://doi.org/10.1161/circulationaha.120.047659
- Epidemiology, healthcare resource utilization, and mortality of asthma and COPD in COVID-19: A systematic literature review and meta-analyses.Journal of Asthma and Allergy. 2022; Volume 15: 811-825
Article info
Publication history
Identification
Copyright
User license
Creative Commons Attribution – NonCommercial – NoDerivs (CC BY-NC-ND 4.0) |
Permitted
For non-commercial purposes:
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article (private use only, not for distribution)
- Reuse portions or extracts from the article in other works
Not Permitted
- Sell or re-use for commercial purposes
- Distribute translations or adaptations of the article
Elsevier's open access license policy