Advertisement

Quality of Life and Psychological Well-being Among Children and Adolescents With Diabetes And Their Caregivers Using Open-Source Automated Insulin Delivery Systems: Findings From a Multinational Survey

Published:November 21, 2022DOI:https://doi.org/10.1016/j.diabres.2022.110153

      Abstract

      Background

      Open-source automated insulin delivery (AID) systems have shown to be safe and effective in children and adolescents with type 1 diabetes (T1D) in real-world studies. However, there is a lack of evidence on the effect on their and their caregivers’ quality-of-life (QoL) and well-being. The aim of this study was to assess the QoL of caregivers and children and adolescents using open-source AID systems using validated measures.

      Methods

      In this cross-sectional online survey we examined the caregiver-reported QoL and well-being of users and non-users. Validated questionnaires assessed general well-being (WHO-5), diabetes-specific QoL (PAID, PedsQL) and sleep quality (PSQI).

      Results

      168 caregivers from 27 countries completed at least one questionnaire, including 119 caregivers of children using open-source AID and 49 not using them. After inclusion of covariates, all measures but the PAID and one subscale of the PedsQL showed significant between-group differences with AID users reporting higher general (WHO-5: p=0.003), sleep-related (PSQI: p=0.001) and diabetes-related QoL (PedsQL: p<0.05).

      Conclusions

      The results show the potential impact of open-source AID on QoL and psychological well-being of caregivers and children and adolescents with T1D, and can therefore help to inform academia, regulators, and policymakers about the psychosocial health implications of open-source AID.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Diabetes Research and Clinical Practice
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • DiMeglio L.A.
        • Acerini C.L.
        • Codner E.
        • Craig M.E.
        • Hofer S.E.
        • Pillay K.
        • et al.
        ISPAD Clinical Practice Consensus Guidelines 2018: Glycemic control targets and glucose monitoring for children, adolescents, and young adults with diabetes.
        Pediatr Diabetes. 2018; 19: 105-114
        • Szadkowska A.
        • Pietrzak I.
        • Mianowska B.
        • Bodalska-Lipińska J.
        • Keenan H.A.
        • Toporowska-Kowalska E.
        • et al.
        Insulin sensitivity in Type 1 diabetic children and adolescents.
        Diabet Med. 2008; 25: 282-288
        • Piona C.
        • Marigliano M.
        • Mozzillo E.
        • Franzese A.
        • Zanfardino A.
        • Iafusco D.
        • et al.
        Long-term glycemic control and glucose variability assessed with continuous glucose monitoring in a pediatric population with type 1 diabetes: Determination of optimal sampling duration.
        Pediatr Diabetes. 2020; 21: 1485-1492
        • Karges B.
        • Rosenbauer J.
        • Holterhus P.-M.
        • Beyer P.
        • Seithe H.
        • Vogel C.
        • et al.
        Hospital admission for diabetic ketoacidosis or severe hypoglycemia in 31 330 young patients with type 1 diabetes.
        European Journal of Endocrinology. 2015; 173: 341-350https://doi.org/10.1530/eje-15-0129
        • Foster N.C.
        • Beck R.W.
        • Miller K.M.
        • Clements M.A.
        • Rickels M.R.
        • DiMeglio L.A.
        • et al.
        State of Type 1 Diabetes Management and Outcomes from the T1D Exchange in 2016–2018.
        Diabetes Technol Ther. 2019; 21: 66-72
        • Bronner M.B.
        • Peeters M.A.C.
        • Sattoe J.N.T.
        • van Staa A.
        The impact of type 1 diabetes on young adults’ health-related quality of life.
        Health Qual Life Outcomes. 2020; 18: 137
      1. de Wit M Gajewska KA McDarby V Zhao X Hapunda G Goethals ER Delamater A DiMeglio L. ISPAD Clinical Practice Consensus Guidelines 2022: Psychological care of children, adolescents and young adults with diabetes. https://www.ispad.org/forums/Topics.aspx?forum=259219& n.d.

        • Whittemore R.
        • Jaser S.
        • Chao A.
        • Jang M.
        • Grey M.
        Psychological experience of parents of children with type 1 diabetes: a systematic mixed-studies review.
        Diabetes Educ. 2012; 38: 562-579
        • Butler D.A.
        • Zuehlke J.B.
        • Tovar A.
        • Volkening L.K.
        • Anderson B.J.
        • Laffel L.M.B.
        The impact of modifiable family factors on glycemic control among youth with type 1 diabetes.
        Pediatr Diabetes. 2008; 9: 373-381
        • Helgeson V.S.
        • Becker D.
        • Escobar O.
        • Siminerio L.
        Families with children with diabetes: implications of parent stress for parent and child health.
        J Pediatr Psychol. 2012; 37: 467-478
        • Streisand R.
        • Swift E.
        • Wickmark T.
        • Chen R.
        • Holmes C.S.
        Pediatric parenting stress among parents of children with type 1 diabetes: the role of self-efficacy, responsibility, and fear.
        J Pediatr Psychol. 2005; 30: 513-521
        • Musolino G.
        • Dovc K.
        • Boughton C.K.
        • Tauschmann M.
        • Allen J.M.
        • Nagl K.
        • et al.
        Reduced burden of diabetes and improved quality of life: Experiences from unrestricted day-and-night hybrid closed-loop use in very young children with type 1 diabetes.
        Pediatr Diabetes. 2019;
        • Forlenza G.P.
        • Buckingham B.A.
        • Brown S.A.
        • Bode B.W.
        • Levy C.J.
        • Criego A.B.
        • et al.
        First Outpatient Evaluation of a Tubeless Automated Insulin Delivery System with Customizable Glucose Targets in Children and Adults with Type 1 Diabetes.
        Diabetes Technol Ther. 2021; 23: 410-424
        • Tauschmann M.
        • Allen J.M.
        • Nagl K.
        • Fritsch M.
        • Yong J.
        • Metcalfe E.
        • et al.
        Home Use of Day-and-Night Hybrid Closed-Loop Insulin Delivery in Very Young Children: A Multicenter, 3-Week.
        Randomized Trial. Diabetes Care. 2019; 42: 594-600
        • Benhamou P.-Y.
        • Franc S.
        • Reznik Y.
        • Thivolet C.
        • Schaepelynck P.
        • Renard E.
        • et al.
        Closed-loop insulin delivery in adults with type 1 diabetes in real-life conditions: a 12-week multicentre, open-label randomised controlled crossover trial.
        Lancet Digit Health. 2019; 1: e17-e25
        • Brown S.A.
        • Forlenza G.P.
        • Bode B.W.
        • Pinsker J.E.
        • Levy C.J.
        • Criego A.B.
        • et al.
        Multicenter Trial of a Tubeless, On-Body Automated Insulin Delivery System With Customizable Glycemic Targets in Pediatric and Adult Participants With Type 1 Diabetes.
        Diabetes Care. 2021; 44: 1630-1640
        • Biester T.
        • Nir J.
        • Remus K.
        • Farfel A.
        • Muller I.
        • Biester S.
        • et al.
        DREAM5: An open-label, randomized, cross-over study to evaluate the safety and efficacy of day and night closed-loop control by comparing the MD-Logic automated insulin delivery system to sensor augmented pump therapy in patients with type 1 diabetes at home.
        Diabetes Obes Metab. 2019; 21: 822-828
        • Breton M.D.
        • Kanapka L.G.
        • Beck R.W.
        • Ekhlaspour L.
        • Forlenza G.P.
        • Cengiz E.
        • et al.
        A Randomized Trial of Closed-Loop Control in Children with Type 1 Diabetes.
        N Engl J Med. 2020; 383: 836-845
        • Knoll C.
        • Peacock S.
        • Wäldchen M.
        • Cooper D.
        • Aulakh S.K.
        • Raile K.
        • et al.
        Real‐world evidence on clinical outcomes of people with type 1 diabetes using open‐source and commercial automated insulin dosing systems: A systematic review.
        Diabet Med. 2022; 39
        • Cobry E.C.
        • Hamburger E.
        • Jaser S.S.
        Impact of the Hybrid Closed-Loop System on Sleep and Quality of Life in Youth with Type 1 Diabetes and Their Parents.
        Diabetes Technol Ther. 2020; 22: 794-800
        • Cobry E.C.
        • Kanapka L.G.
        • Cengiz E.
        • Carria L.
        • Ekhlaspour L.
        • Buckingham B.A.
        • et al.
        Health-Related Quality of Life and Treatment Satisfaction in Parents and Children with Type 1 Diabetes Using Closed-Loop Control.
        Diabetes Technol Ther. 2021; 23: 401-409
        • Abraham M.B.
        • de Bock M.
        • Smith G.J.
        • Dart J.
        • Fairchild J.M.
        • King B.R.
        • et al.
        Effect of a Hybrid Closed-Loop System on Glycemic and Psychosocial Outcomes in Children and Adolescents With Type 1 Diabetes: A Randomized Clinical Trial.
        JAMA Pediatr. 2021; 175: 1227
        • Hood K.K.
        • Laffel L.M.
        • Danne T.
        • Nimri R.
        • Weinzimer S.A.
        • Sibayan J.
        • et al.
        Lived experience of advanced hybrid closed-loop versus hybrid closed loop: patient-reported outcomes and perspectives.
        Diabetes Technol Ther. 2021; 23: 857-861
        • Boscari F.
        • Ferretto S.
        • Cavallin F.
        • Bruttomesso D.
        Switching from predictive low glucose suspend to advanced hybrid closed loop control: Effects on glucose control and patient reported outcomes.
        Diabetes Res Clin Pract. 2022; 185: 109784
        • Weissberg-Benchell J.
        • Shapiro J.B.
        • Hood K.
        • Laffel L.M.
        • Naranjo D.
        • Miller K.
        • et al.
        Assessing patient-reported outcomes for automated insulin delivery systems: the psychometric properties of the INSPIRE measures.
        Diabet Med. 2019; 36: 644-652
        • Pinsker J.E.
        • Müller L.
        • Constantin A.
        • Leas S.
        • Manning M.
        • McElwee Malloy M.
        • et al.
        Real-World Patient-Reported Outcomes and Glycemic Results with Initiation of Control-IQ Technology.
        Diabetes Technol Ther. 2021; 23: 120-127
        • Beato-Víbora P.I.
        • Gallego-Gamero F.
        • Lázaro-Martín L.
        • Romero-Pérez M.D.M.
        • Arroyo-Díez F.J.
        Prospective Analysis of the Impact of Commercialized Hybrid Closed-Loop System on Glycemic Control, Glycemic Variability, and Patient-Related Outcomes in Children and Adults: A Focus on Superiority Over Predictive Low-Glucose Suspend Technology.
        Diabetes Technol Ther. 2020; 22: 912-919
        • Addala A.
        • Suttiratana S.C.
        • Wong J.J.
        • Lanning M.S.
        • Barnard K.D.
        • Weissberg‐Benchell J.
        • et al.
        Cost considerations for adoption of diabetes technology are pervasive: A qualitative study of persons living with type 1 diabetes and their families.
        Diabet Med. 2021; 38: e14575
        • Berget C.
        • Messer L.H.
        • Vigers T.
        • Frohnert B.I.
        • Pyle L.
        • Wadwa R.P.
        • et al.
        Six months of hybrid closed loop in the real-world: An evaluation of children and young adults using the 670G system.
        Pediatr Diabetes. 2020; 21: 310-318
        • Pauley M.E.
        • Berget C.
        • Messer L.H.
        • Forlenza G.P.
        Barriers to Uptake of Insulin Technologies and Novel Solutions.
        Med Devices. 2021; 14: 339-354
        • Messer L.H.
        • Berget C.
        • Vigers T.
        • Pyle L.
        • Geno C.
        • Wadwa R.P.
        • et al.
        Real world hybrid closed-loop discontinuation: Predictors and perceptions of youth discontinuing the 670G system in the first 6 months.
        Pediatr Diabetes. 2020; 21: 319-327
        • Naranjo D.
        • Suttiratana S.C.
        • Iturralde E.
        • Barnard K.D.
        • Weissberg-Benchell J.
        • Laffel L.
        • et al.
        What End Users and Stakeholders Want From Automated Insulin Delivery Systems.
        Diabetes Care. 2017; 40: 1453-1461
        • Ware J.
        • Hovorka R.
        Recent advances in closed-loop insulin delivery.
        Metabolism. 2022; 127: 154953
        • Braune K.
        • O'Donnell S.
        • Cleal B.
        • Lewis D.
        • Tappe A.
        • Willaing I.
        • et al.
        Real-World Use of Do-It-Yourself Artificial Pancreas Systems in Children and Adolescents With Type 1 Diabetes: Online Survey and Analysis of Self-Reported Clinical Outcomes.
        JMIR Mhealth Uhealth. 2019; 7: e14087
        • Petruzelkova L.
        • Jiranova P.
        • Soupal J.
        • Kozak M.
        • Plachy L.
        • Neuman V.
        • et al.
        Pre-school and school-aged children benefit from the switch from a sensor-augmented pump to an AndroidAPS hybrid closed loop: A retrospective analysis.
        Pediatr Diabetes. 2021; https://doi.org/10.1111/pedi.13190
        • Petruzelkova L.
        • Soupal J.
        • Plasova V.
        • Jiranova P.
        • Neuman V.
        • Plachy L.
        • et al.
        Excellent Glycemic Control Maintained by Open-Source Hybrid Closed-Loop AndroidAPS During and After Sustained Physical Activity.
        Diabetes Technol Ther. 2018; 20: 744-750
        • Braune K.
        • Gajewska K.A.
        • Thieffry A.
        • Lewis D.M.
        • Froment T.
        • O'Donnell S.
        • et al.
        Why #WeAreNotWaiting—Motivations and Self-Reported Outcomes Among Users of Open-source Automated Insulin Delivery Systems: Multinational Survey.
        J Med Internet Res. 2021; 23: e25409
        • Lum J.W.
        • Bailey R.J.
        • Barnes-Lomen V.
        • Naranjo D.
        • Hood K.K.
        • Lal R.A.
        • et al.
        A Real-World Prospective Study of the Safety and Effectiveness of the Loop Open Source Automated Insulin Delivery System.
        Diabetes Technol Ther. 2021; 23: 367-375
        • Burnside M.J.
        • Lewis D.M.
        • Crocket H.R.
        • Meier R.A.
        • Williman J.A.
        • Sanders O.J.
        • et al.
        Open-Source Automated Insulin Delivery in Type 1 Diabetes.
        N Engl J Med. 2022; 387: 869-881
        • Wu Z.
        • Luo S.
        • Zheng X.
        • Bi Y.
        • Xu W.
        • Yan J.
        • et al.
        Use of a do-it-yourself artificial pancreas system is associated with better glucose management and higher quality of life among adults with type 1 diabetes.
        Ther Adv Endocrinol Metab. 2020; 11
        • Braune K.
        • Krug N.
        • Knoll C.
        • Ballhausen H.
        • Thieffry A.
        • Chen Y.
        • et al.
        Emotional and Physical Health Impact in Children and Adolescents and Their Caregivers Using Open-Source Automated Insulin Delivery: Qualitative Analysis of Lived Experiences (Preprint).
        J Med Internet Res. 2022; 24: e37120
        • Marshall D.C.
        • Holloway M.
        • Korer M.
        • Woodman J.
        • Brackenridge A.
        • Hussain S.
        Do-It-Yourself Artificial Pancreas Systems in Type 1 Diabetes: Perspectives of Two Adult Users, a Caregiver and Three Physicians.
        Diabetes Ther. 2019; 10: 1553-1564
        • Ahmed S.H.
        • Ewins D.L.
        • Bridges J.
        • Timmis A.
        • Payne N.
        • Mooney C.
        • et al.
        Do-It-Yourself (DIY) Artificial Pancreas Systems for Type 1 Diabetes: Perspectives of Two Adult Users, Parent of a User and Healthcare Professionals.
        Adv Ther. 2020; 37: 3929-3941
        • Vallis M.
        • Holt R.I.G.
        User-driven open-source artificial pancreas systems and patient-reported outcomes: A missed opportunity?.
        Diabet Med. 2022; 39: e14797
        • Eysenbach G.
        Improving the quality of Web surveys: the Checklist for Reporting Results of Internet E-Surveys (CHERRIES).
        J Med Internet Res. 2004; 6: e34
        • Braune K.
        • Lal R.A.
        • Petruželková L.
        • Scheiner G.
        • Winterdijk P.
        • Schmidt S.
        • et al.
        Open-source automated insulin delivery: international consensus statement and practical guidance for health-care professionals.
        Lancet Diabetes Endocrinol. 2022; 10: 58-74
        • Topp C.W.
        • Østergaard S.D.
        • Søndergaard S.
        • Bech P.
        The WHO-5 Well-Being Index: a systematic review of the literature.
        Psychother Psychosom. 2015; 84: 167-176
        • Birket-Smith M.
        • Hansen B.H.
        • Hanash J.A.
        • Hansen J.F.
        • Rasmussen A.
        Mental disorders and general well-being in cardiology outpatients–6-year survival.
        J Psychosom Res. 2009; 67: 5-10
        • Welch G.W.
        • Jacobson A.M.
        • Polonsky W.H.
        The Problem Areas in Diabetes Scale. An evaluation of its clinical utility.
        Diabetes Care. 1997; 20: 760-766
        • Polonsky W.H.
        • Anderson B.J.
        • Lohrer P.A.
        • Welch G.
        • Jacobson A.M.
        • Aponte J.E.
        • et al.
        Assessment of diabetes-related distress.
        Diabetes Care. 1995; 18: 754-760
        • Buysse D.J.
        • Reynolds C.F.
        • Monk T.H.
        • Berman S.R.
        • Kupfer D.J.
        The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research.
        Psychiatry Res. 1989; 28: 193-213
        • Varni J.W.
        • Burwinkle T.M.
        • Jacobs J.R.
        • Gottschalk M.
        • Kaufman F.
        • Jones K.L.
        The PedsQL in type 1 and type 2 diabetes: reliability and validity of the Pediatric Quality of Life Inventory Generic Core Scales and type 1 Diabetes Module.
        Diabetes Care. 2003; 26: 631-637
        • Harris P.A.
        • Taylor R.
        • Thielke R.
        • Payne J.
        • Gonzalez N.
        • Conde J.G.
        Research electronic data capture (REDCap)–a metadata-driven methodology and workflow process for providing translational research informatics support.
        J Biomed Inform. 2009; 42: 377-381
        • Jaser S.S.
        • Foster N.C.
        • Nelson B.A.
        • Kittelsrud J.M.
        • DiMeglio L.A.
        • Quinn M.
        • et al.
        Sleep in children with type 1 diabetes and their parents in the T1D Exchange.
        Sleep Med. 2017; 39: 108-115
        • Reutrakul S.
        • Thakkinstian A.
        • Anothaisintawee T.
        • Chontong S.
        • Borel A.-L.
        • Perfect M.M.
        • et al.
        Sleep characteristics in type 1 diabetes and associations with glycemic control: systematic review and meta-analysis.
        Sleep Med. 2016; 23: 26-45
      2. J. Speight P. Choudhary E.G. Wilmot C. Hendrieckx H. Forde W.Y. Cheung et al. Impact of glycaemic technologies on quality of life and related outcomes in adults with type 1 diabetes: A narrative review

        • Adams R.N.
        • Tanenbaum M.L.
        • Hanes S.J.
        • Ambrosino J.M.
        • Ly T.T.
        • Maahs D.M.
        • et al.
        Psychosocial and Human Factors During a Trial of a Hybrid Closed Loop System for Type 1 Diabetes Management.
        Diabetes Technol Ther. 2018; 20: 648-653
        • Wheeler B.J.
        • Collyns O.J.
        • Meier R.A.
        • Betts Z.L.
        • Frampton C.
        • Frewen C.M.
        • et al.
        Improved technology satisfaction and sleep quality with Medtronic MiniMed® Advanced Hybrid Closed-Loop delivery compared to predictive low glucose suspend in people with Type 1 Diabetes in a randomized crossover trial.
        Acta Diabetol. 2022; 59: 31-37
        • Lewis D.
        • Leibrand S.
        • #OpenAPS Community
        Real-World Use of Open Source Artificial Pancreas Systems.
        J Diabetes Sci Technol. 2016; 10: 1411
        • Hng T.-M.
        • Burren D.
        Appearance of Do-It-Yourself closed-loop systems to manage type 1 diabetes.
        Intern Med J. 2018; 48: 1400-1404
        • Wong J.J.
        • Suttiratana S.C.
        • Lal R.A.
        • Lum J.W.
        • Lanning M.S.
        • Dunlap A.
        • et al.
        Discontinued Use of the Loop Insulin Dosing System: A Mixed-Methods Investigation.
        Diabetes Technol Ther. 2022; 24: 241-248