Advertisement

Renal function decline and heart failure hospitalisation in patients with type 2 diabetes: Dynamic predictions from the prospective SURDIAGENE cohort

Published:November 11, 2022DOI:https://doi.org/10.1016/j.diabres.2022.110152

      Abstract

      Aims

      For type 2 diabetes persons, we assessed the association between renal function decline and heart failure hospitalisation (HFH) and validated dynamic HFH predictions (DynHFH) based on repeated estimated Glomerular Filtration Rate (eGFR) values.

      Methods

      We studied 1413 patients from the SURDIAGENE cohort. From a joint model for longitudinal CKD-EPI measures and HFH risk, we calculated the probability of being HFH-free in the next five years.

      Results

      The mean eGFR decline was estimated at 1.48 ml/min/1.73 m2 per year (95 % CI from 1.23 to 1.74). We observed that eGFR decline was significantly associated with the HFH risk (adjHR = 1.15 for an increase in yearly decline of 1 ml/min/1.73 m2, 95 % CI from 1.03 to 1.26) independently of 7 baseline variables (from clinical, biological and ECG domains). Discrimination was good along the prediction times: AUC at 0.87 (95 %CI from 0.84 to 0.91) at patient inclusion and 0.77 (95 %CI from 0.67 to 0.87) at seven years’ follow-up.

      Conclusions

      Renal function decline was significantly associated with the HFH risk. In the era of computer-assisted medical decisions, the DynHFH, a tool that dynamically predicts HFH in type 2 diabetes persons (https://shiny.idbc.fr/DynHFH), might be helpful for precision medicine and the implementation of stratified medical decision-making.

      Keywords

      Abbreviations:

      ACR (Albumin-to-Creatinine Ratio), AUC (Area Under ROC Curve), CI (Confidence Interval), CKD-EPI (Chronic Kidney Disease EPIdemiology), DynHFH (Dynamic prediction of Heart Failure Hospitalisation), eGFR (estimated Glomerular Filtration Rate), ESKD (End-Stage Kidney Disease), HDL (High-Density Lipoprotein), HFH (Heart Failure Hospitalisation), HFrEF/HFpEF (Heart Failure with reduced/preserved Ejection Fraction), HbA1C (glycated Hemoglobin), HR (Hazard Ratio), LDL (Low-Density Lipoprotein), NT-proBNP (N-terminal pro B-type Natriuretic Peptide), RECODe (Risk Equations for Complications Of type 2 Diabetes), SD (Standard Deviation), SURDIAGENE (SURvival DIAbetes and GENEtics), TRIPOD (Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Diabetes Research and Clinical Practice
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Saeedi P.
        • Petersohn I.
        • Salpea P.
        • et al.
        Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas.
        Diabetes Res Clin Pract. 2019; 157107843https://doi.org/10.1016/j.diabres.2019.107843
        • Rawshani A.
        • Rawshani A.
        • Franzén S.
        • et al.
        Mortality and Cardiovascular Disease in Type 1 and Type 2 Diabetes.
        N Engl J Med. 2017; 376: 1407-1418https://doi.org/10.1056/NEJMoa1608664
        • Rawshani A.
        • Rawshani A.
        • Franzén S.
        • et al.
        Risk Factors, Mortality, and Cardiovascular Outcomes in Patients with Type 2 Diabetes.
        N Engl J Med. 2018; 379: 633-644https://doi.org/10.1056/NEJMoa1800256
        • Ohkuma T.
        • Komorita Y.
        • Peters S.A.E.
        • Woodward M.
        Diabetes as a risk factor for heart failure in women and men: a systematic review and meta-analysis of 47 cohorts including 12 million individuals.
        Diabetologia. 2019; 62: 1550-1560https://doi.org/10.1007/s00125-019-4926-x
        • Colombo M.
        • McGurnaghan S.J.
        • Bell S.
        • et al.
        Predicting renal disease progression in a large contemporary cohort with type 1 diabetes mellitus.
        Diabetologia. 2020; 63: 636-647https://doi.org/10.1007/s00125-019-05052-z
        • Gerstein H.C.
        • Paré G.
        • McQueen M.J.
        • et al.
        Novel Biomarkers for Change in Renal Function in People With Dysglycemia.
        Diabetes Care. 2020; 43: 433-439https://doi.org/10.2337/dc19-1604
        • Ragot S.
        • Saulnier P.-J.
        • Velho G.
        • et al.
        Dynamic Changes in Renal Function Are Associated With Major Cardiovascular Events in Patients With Type 2 Diabetes.
        Diabetes Care. 2016; 39: 1259-1266https://doi.org/10.2337/dc15-2607
        • Pocock S.J.
        • Ariti C.A.
        • McMurray J.J.V.
        • et al.
        Predicting survival in heart failure: a risk score based on 39 372 patients from 30 studies.
        Eur Heart J. 2013; 34: 1404-1413https://doi.org/10.1093/eurheartj/ehs337
        • Hayes A.J.
        • Leal J.
        • Gray A.M.
        • Holman R.R.
        • Clarke P.M.
        UKPDS outcomes model 2: a new version of a model to simulate lifetime health outcomes of patients with type 2 diabetes mellitus using data from the 30 year United Kingdom Prospective Diabetes Study: UKPDS 82.
        Diabetologia. 2013; 56: 1925-1933https://doi.org/10.1007/s00125-013-2940-y
        • Basu S.
        • Sussman J.B.
        • Berkowitz S.A.
        • Hayward R.A.
        • Yudkin J.S.
        Development and validation of Risk Equations for Complications Of type 2 Diabetes (RECODe) using individual participant data from randomised trials.
        Lancet Diabetes Endocrinol. 2017; 5: 788-798https://doi.org/10.1016/S2213-8587(17)30221-8
        • Proust-Lima C.
        • Blanche P.
        Dynamic Predictions.
        Statistics Reference Online, Wiley StatsRef2016
        • Rizopoulos D.
        Joint Models for Longitudinal and Time-to-Event Data: With Applications in R.
        CRC Press, 2012
        • Fournier M.-C.
        • Foucher Y.
        • Blanche P.
        • et al.
        Dynamic predictions of long-term kidney graft failure: an information tool promoting patient-centred care.
        Nephrol Dial Transplant. 2019; 34: 1961-1969https://doi.org/10.1093/ndt/gfz027
        • McDonagh T.A.
        • Metra M.
        • Adamo M.
        • et al.
        2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure.
        Eur Heart J. 2021; 42: 3599-3726https://doi.org/10.1093/eurheartj/ehab368
        • Levey A.S.
        • Stevens L.A.
        • Schmid C.H.
        • et al.
        A new equation to estimate glomerular filtration rate.
        Ann Intern Med. 2009; 150: 604-612
        • Schemper M.
        • Smith T.L.
        A note on quantifying follow-up in studies of failure time.
        Control Clin Trials. 1996; 17: 343-346
        • Rizopoulos D.
        The R Package JMbayes for Fitting Joint Models for Longitudinal and Time-to-Event Data Using MCMC.
        J Stat Softw. 2016; 72https://doi.org/10.18637/jss.v072.i07
        • Collins G.S.
        • Reitsma J.B.
        • Altman D.G.
        • Moons K.G.M.
        Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD): The TRIPOD Statement.
        Ann Intern Med. 2015; 162: 55https://doi.org/10.7326/M14-0697
        • Moons K.G.M.
        • Altman D.G.
        • Reitsma J.B.
        • et al.
        Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD): explanation and Elaboration.
        Ann Intern Med. 2015; 162: W1https://doi.org/10.7326/M14-0698
        • Fournier M.-C.
        • Dantan E.
        • Blanche P.
        An R2 -curve for evaluating the accuracy of dynamic predictions.
        Stat Med. 2018; 37: 1125-1133https://doi.org/10.1002/sim.7571
        • Blanche P.
        • Proust-Lima C.
        • Loubère L.
        • Berr C.
        • Dartigues J.-F.
        • Jacqmin-Gadda H.
        Quantifying and comparing dynamic predictive accuracy of joint models for longitudinal marker and time-to-event in presence of censoring and competing risks.
        Biometrics. 2015; 71: 102-113
        • Pandey A.
        • Vaduganathan M.
        • Patel K.V.
        • et al.
        Biomarker-Based Risk Prediction of Incident Heart Failure in Pre-Diabetes and Diabetes. JACC.
        Heart Failure. 2021; 9: 215-223https://doi.org/10.1016/j.jchf.2020.10.013
        • Cheng F.
        • Luk A.O.
        • Wu H.
        • et al.
        Relative leucocyte telomere length is associated with incident end-stage kidney disease and rapid decline of kidney function in type 2 diabetes: analysis from the Hong Kong Diabetes Register.
        Diabetologia. 2022; 65: 375-386https://doi.org/10.1007/s00125-021-05613-1
        • Garlo K.G.
        • White W.B.
        • Bakris G.L.
        • et al.
        Kidney Biomarkers and Decline in eGFR in Patients with Type 2 Diabetes.
        Clin J Am Soc Nephrol. 2018; 13: 398-405https://doi.org/10.2215/CJN.05280517
        • Guo Y.
        • Cui L.
        • Ye P.
        • Li J.
        • Wu S.
        • Luo Y.
        Change of Kidney Function Is Associated With All-Cause Mortality and Cardiovascular Diseases: Results From the Kailuan Study.
        J Am Heart Assoc. 2018; 7e010596https://doi.org/10.1161/JAHA.118.010596
        • Guyton A.C.
        • Coleman T.G.
        • Granger H.J.
        Circulation: overall regulation.
        Annu Rev Physiol. 1972; 34: 13-46https://doi.org/10.1146/annurev.ph.34.030172.000305
        • Verbrugge F.H.
        • Dupont M.
        • Steels P.
        • et al.
        The kidney in congestive heart failure: “are natriuresis, sodium, and diuretics really the good, the bad and the ugly?”.
        Eur J Heart Fail. 2014; 16: 133-142https://doi.org/10.1002/ejhf.35
        • Maack C.
        • Lehrke M.
        • Backs J.
        • et al.
        Heart failure and diabetes: metabolic alterations and therapeutic interventions: a state-of-the-art review from the Translational Research Committee of the Heart Failure Association-European Society of Cardiology.
        Eur Heart J. 2018; 39: 4243-4254https://doi.org/10.1093/eurheartj/ehy596
        • Flores M.
        • Glusman G.
        • Brogaard K.
        • Price N.D.
        • Hood L.
        P4 medicine: how systems medicine will transform the healthcare sector and society.
        Per Med. 2013; 10: 565-576https://doi.org/10.2217/pme.13.57
        • Khan M.S.
        • Bakris G.L.
        • Shahid I.
        • Weir M.R.
        • Butler J.
        Potential Role and Limitations of Estimated Glomerular Filtration Rate Slope Assessment in Cardiovascular Trials: A Review.
        JAMA Cardiology. 2022; https://doi.org/10.1001/jamacardio.2021.5151
        • Ahmad T.
        • Felker G.M.
        Setting the Stage for a Multimarker-Based Heart Failure Prevention Trial?∗. JACC.
        Heart Failure. 2021; 9: 224-225https://doi.org/10.1016/j.jchf.2021.01.001
        • de Boer I.H.
        • Caramori M.L.
        • Chan J.C.N.
        • et al.
        KDIGO 2020 Clinical Practice Guideline for Diabetes Management in Chronic Kidney Disease.
        Kidney Int. 2020; 98: S1-S115https://doi.org/10.1016/j.kint.2020.06.019