Skin hydration level cutoff value to predict wound healing potential in diabetic foot ulcers

Published:October 18, 2022DOI:


      • Maintaining adequate skin hydration may be crucial for diabetic wound healing.
      • This study investigated the skin hydration level cutoff value to predict healing of diabetic foot ulcers.
      • Skin hydration values ≤ 20 arbitrary units are associated with a significantly higher incidence of amputation.



      Transcutaneous oxygen pressure (TcPO2) is a reliable predictor of wound healing in diabetes patients; however, measurements are cumbersome. Previously, we demonstrated that skin hydration in the feet of patients with diabetic foot ulcers (DFU) is influenced by microcirculation rather than peripheral nerve function. Furthermore, skin hydration level before recanalization can predict wound healing better than TcPO2. This study investigated the skin hydration level cutoff value to predict DFU healing.


      We retrospectively enrolled 834 patients with DFU. Wound healing outcomes were graded as healed without amputation or with minor/major amputation. Receiver operating characteristic analysis was used to evaluate the ability of skin hydration to predict wound healing outcomes and determine the optimal cutoff value for subsequent analyses.


      Average skin hydration values in the healed without and with amputation groups were 25.0 ± 7.4 arbitrary units (a.u.) and 17.5 ± 5.7 a.u., respectively (P < 0.001). The healing rate without amputation increased with skin hydration. A skin hydration value ≥ 21 a.u. significantly lowered the incidence of amputation. The cutoff value was 21 a.u. [(Youden's index, sensitivity, specificity, P-value) = (1.6, 92, 69.6, P < 0.001)].


      A minimal skin hydration value of 21 a.u. is required for diabetic wound healing.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Diabetes Research and Clinical Practice
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Wild S.
        • Roglic G.
        • Green A.
        • Sicree R.
        • King H.
        Global prevalence of diabetes: estimates for the year 2000 and projections for 2030.
        Diabetes Care. 2004; 27: 1047-1053
        • Davis F.M.
        • Kimball A.
        • Boniakowski A.
        • Gallagher K.
        Dysfunctional Wound Healing in Diabetic Foot Ulcers: New Crossroads.
        Curr Diab Rep. 2018; 18: 2
        • Geiss L.S.
        • Li Y.
        • Hora I.
        • Albright A.
        • Rolka D.
        • Gregg E.W.
        Resurgence of Diabetes-Related Nontraumatic Lower-Extremity Amputation in the Young and Middle-Aged Adult U.S.
        Population Diabetes Care. 2019; 42: 50-54
        • Boulton A.J.
        The diabetic foot: grand overview, epidemiology and pathogenesis.
        Diabetes Metab Res Rev. 2008; 24: S3-S6
        • Yang J.P.
        • Lee Y.N.
        • Son J.W.
        • Han S.K.
        The Impact of Extracorporeal Shock Wave Therapy on Microcirculation in Diabetic Feet: A Pilot Study.
        Adv Skin Wound Care. 2019; 32: 563-567
        • Sen C.K.
        Wound healing essentials: let there be oxygen.
        Wound Repair Regen. 2009; 17: 1-18
        • Jude E.B.
        • Unsworth P.F.
        Optimal treatment of infected diabetic foot ulcers.
        Drugs Aging. 2004; 21: 833-850
      1. Courage W. Hardware and measuring principle : corneometer. Bioengeneering of the skin : water and the stratum corneum 1994.

        • Namgoong S.
        • Yang J.P.
        • Han S.K.
        • Lee Y.N.
        • Dhong E.S.
        Influence of Peripheral Neuropathy and Microangiopathy on Skin Hydration in the Feet of Patients With Diabetes Mellitus.
        Wounds. 2019; 31: 173-178
        • Lee T.Y.
        • Kim K.B.
        • Han S.K.
        • Jeong S.H.
        • Dhong E.S.
        Skin Hydration Level as a Predictor for Diabetic Wound Healing: A Retrospective Study.
        Plast Reconstr Surg. 2019; 143: 848e-e856
        • Park S.H.
        • Goo J.M.
        • Jo C.H.
        Receiver operating characteristic (ROC) curve: practical review for radiologists.
        Korean J Radiol. 2004; 5: 11-18
        • Nahm F.S.
        Receiver operating characteristic curve: overview and practical use for clinicians.
        Korean J Anesthesiol. 2022; 75: 25-36
      2. Doi SAR. Using and Interpreting Diagnostic Tests with Quantitative Results. In: Doi SAR, Williams GM, editors. Methods of Clinical Epidemiology. Berlin, Heidelberg: Springer Berlin Heidelberg; 2013. p. 67-78.

        • Game F.L.
        • Jeffcoate W.J.J.P.
        • Surgery R.
        Dressing and diabetic foot ulcers: a current review of the evidence. 2016; 138: 158S-S164
        • de Macedo G.M.C.
        • Nunes S.
        • Barreto T.J.D.
        syndrome m.
        Skin disorders in diabetes mellitus: an epidemiology and physiopathology review. 2016; 8: 1-8
        • Sakai S.
        • Kikuchi K.
        • Satoh J.
        • Tagami H.
        Inoue SJBJoD.
        Functional properties of the stratum corneum in patients with diabetes mellitus: similarities to senile xerosis. 2005; 153: 319-323
        • Sakai S.
        • Endo Y.
        • Ozawa N.
        • Sugawara T.
        • Kusaka A.
        • Sayo T.
        • et al.
        Characteristics of the epidermis and stratum corneum of hairless mice with experimentally induced diabetes mellitus. 2003; 120: 79-85
        • Horii I.
        • Nakayama Y.
        • Obata M.
        Tagami HJBJoD.
        Stratum corneum hydration and amino acid content in xerotic skin. 1989; 121: 587-592
        • Imokawa G.
        • Kuno H.
        Kawai MJJoid.
        Stratum corneum lipids serve as a bound-water modulator. 1990; 96: 845-851
      3. O’goshi K-i, Iguchi M, Tagami HJAodr. Functional analysis of the stratum corneum of scalp skin: studies in patients with alopecia areata and androgenetic alopecia. 2000;292:605-11.

      4. Barel AJHon-im, skin t. Measurement of epidermal capacitance. 1995:165-70.

      5. Distante F, Berardesca E. Transepidermal water Loss, bioengineering of the skin: methods and instrumentation. In: CRC Press; 1995.

      6. Elsner P. Skin elasticity in bioengineering and the skin: methods and instrumentations. In: CRC Press, Boca Raton; 1995.

      7. Triebskorn A, Gloor M. Noninvasive methods for the determination of skin hydration. In: Noninvasive methods for the quantification of skin functions. Springer; 1993. p. 42-55.

      8. Mayrovitz HN, Volosko I, Sarkar B, Pandya NJJoDS, Technology. Arm, leg, and foot skin water in persons with diabetes mellitus (DM) in relation to HbA1c assessed by tissue dielectric constant (TDC) technology measured at 300 MHz. 2017;11:584-9.

      9. Burgess JL, Wyant WA, Abdo Abujamra B, Kirsner RS, Jozic I. Diabetic Wound-Healing Science. Medicina (Kaunas) 2021;57.

        • El Khouli R.H.
        • Macura K.J.
        • Barker P.B.
        • Habba M.R.
        • Jacobs M.A.
        • Bluemke D.A.
        Relationship of temporal resolution to diagnostic performance for dynamic contrast enhanced MRI of the breast.
        J Magn Reson Imaging. 2009; 30: 999-1004
        • Michener L.A.
        • Walsworth M.K.
        • Doukas W.C.
        • Murphy K.P.
        Reliability and diagnostic accuracy of 5 physical examination tests and combination of tests for subacromial impingement.
        Arch Phys Med Rehabil. 2009; 90: 1898-1903
        • Bauer T.W.
        • Bedair H.
        • Creech J.D.
        • Deirmengian C.
        • Eriksson H.
        • Fillingham Y.
        • et al.
        Hip and knee section, diagnosis, laboratory tests: proceedings of international consensus on orthopedic infections. 2019; 34: S351-S359
        • Heinrich U.
        • Koop U.
        • Leneveu-Duchemin M.C.
        • Osterrieder K.
        • Bielfeldt S.
        • Chkarnat C.
        • et al.
        Multicentre comparison of skin hydration in terms of physical-, physiological- and product-dependent parameters by the capacitive method (Corneometer CM 825).
        Int J Cosmet Sci. 2003; 25: 45-53
        • Papanas N.
        • Papazoglou D.
        • Papatheodorou K.
        • Maltezos E.
        Evaluation of a new foam to increase skin hydration of the foot in type 2 diabetes: a pilot study.
        Int Wound J. 2011; 8: 297-300
        • Lai C.C.K.
        • Md Nor N.
        • Kamaruddin N.A.
        • Jamil A.
        • Safian N.
        Comparison of transepidermal water loss and skin hydration in diabetics and nondiabetics.
        Clin Exp Dermatol. 2021; 46: 58-64