Advertisement
In Brief| Volume 192, 110110, October 2022

Diabetes-related antibody-testing is a valuable screening tool for identifying monogenic diabetes – A survey from the worldwide SWEET registry

Published:September 29, 2022DOI:https://doi.org/10.1016/j.diabres.2022.110110

      Abstract

      Aims

      To evaluate access to screening tools for monogenic diabetes in paediatric diabetes centres across the world and its impact on diagnosis and clinical outcomes of children and youth with genetic forms of diabetes.

      Methods

      79 centres from the SWEET diabetes registry including 53,207 children with diabetes participated in a survey on accessibility and use of diabetes related antibodies, c-peptide and genetic testing.

      Results

      73, 63 and 62 participating centres had access to c-peptide, antibody and genetic testing, respectively. Access to antibody testing was associated with higher proportion of patients with rare forms of diabetes identified with monogenic diabetes (54 % versus 17 %, p = 0.01), lower average whole clinic HbA1c (7.7[Q1,Q2: 7.3–8.0]%/61[56–64]mmol/mol versus 9.2[8.6–10.0]%/77[70–86]mmol/mol, p < 0.001) and younger age at onset (8.3 [7.3–8.8] versus 9.7 [8.6–12.7] years p < 0.001). Additional access to c-peptide or genetic testing was not related to differences in age at onset or HbA1c outcome.

      Conclusions

      Clinical suspicion and antibody testing are related to identification of different types of diabetes. Implementing access to comprehensive antibody screening may provide important information for selecting individuals for further genetic evaluation. In addition, worse overall clinical outcomes in centers with limited diagnostic capabilities indicate they may also need support for individualized diabetes management.
      Trial Registration: NCT04427189.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Diabetes Research and Clinical Practice
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Riddle M.C.
        • Philipson L.H.
        • Rich S.S.
        • Carlsson A.
        • Franks P.W.
        • Greeley S.A.W.
        • et al.
        Monogenic diabetes: from genetic insights to population-based precision in care. reflections from a diabetes care editors' expert forum.
        Diabetes Care. 2020; 43: 3117-3128
        • Fendler W.
        • Borowiec M.
        • Baranowska-Jazwiecka A.
        • Szadkowska A.
        • Skala-Zamorowska E.
        • Deja G.
        • et al.
        Prevalence of monogenic diabetes amongst Polish children after a nationwide genetic screening campaign.
        Diabetologia. 2012; 55: 2631-2635
        • Neu A.
        • Feldhahn L.
        • Ehehalt S.
        • Hub R.
        • Ranke M.B.
        • Dg B.-W.
        Type 2 diabetes mellitus in children and adolescents is still a rare disease in Germany: a population-based assessment of the prevalence of type 2 diabetes and MODY in patients aged 0–20 years.
        Pediatr Diabetes. 2009; 10: 468-473
        • Mozzillo E.
        • Salzano G.
        • Barbetti F.
        • Maffeis C.
        • Lombardo F.
        • Franzese A.
        • et al.
        Survey on etiological diagnosis of diabetes in 1244 Italian diabetic children and adolescents: impact of access to genetic testing.
        Diabetes Res Clin Pract. 2015; 107: e15-e18
      1. Delvecchio M, Mozzillo E, Salzano G, Iafusco D, Frontino G, Patera PI, et al. Monogenic Diabetes Accounts for 6.3% of Cases Referred to 15 Italian Pediatric Diabetes Centers During 2007 to 2012. J Clin Endocrinol Metab. 2017;102(6):1826-34.

        • Johansson B.B.
        • Irgens H.U.
        • Molnes J.
        • Sztromwasser P.
        • Aukrust I.
        • Juliusson P.B.
        • et al.
        Targeted next-generation sequencing reveals MODY in up to 6.5% of antibody-negative diabetes cases listed in the Norwegian Childhood Diabetes Registry.
        Diabetologia. 2017; 60: 625-635
        • Johnson S.R.
        • Carter H.E.
        • Leo P.
        • Hollingworth S.A.
        • Davis E.A.
        • Jones T.W.
        • et al.
        Cost-effectiveness Analysis of Routine Screening Using Massively Parallel Sequencing for Maturity-Onset Diabetes of the Young in a Pediatric Diabetes Cohort: Reduced Health System Costs and Improved Patient Quality of Life.
        Diabetes Care. 2019; 42: 69-76
        • Irgens H.U.
        • Molnes J.
        • Johansson B.B.
        • Ringdal M.
        • Skrivarhaug T.
        • Undlien D.E.
        • et al.
        Prevalence of monogenic diabetes in the population-based Norwegian Childhood Diabetes Registry.
        Diabetologia. 2013; 56: 1512-1519
        • Pearson E.R.
        • Pruhova S.
        • Tack C.J.
        • Johansen A.
        • Castleden H.A.
        • Lumb P.J.
        • et al.
        Molecular genetics and phenotypic characteristics of MODY caused by hepatocyte nuclear factor 4alpha mutations in a large European collection.
        Diabetologia. 2005; 48: 878-885
        • Shepherd M.
        Transforming lives: transferring patients with neonatal diabetes from insulin to sulphonylureas.
        European Diabetes Nursing. 2006; 3: 137-142
        • Johnson S.R.
        • Ellis J.J.
        • Leo P.J.
        • Anderson L.K.
        • Ganti U.
        • Harris J.E.
        • et al.
        Comprehensive genetic screening: The prevalence of maturity-onset diabetes of the young gene variants in a population-based childhood diabetes cohort.
        Pediatr Diabetes. 2019; 20: 57-64
      2. Bonfanti R, Iafusco D, Rabbone I, Diedenhofen G, Bizzarri C, Patera PI, et al. Differences between transient neonatal diabetes mellitus subtypes can guide diagnosis and therapy. Eur J Endocrinol. 2021;184(4):575-85.

        • Stride A.
        • Shields B.
        • Gill-Carey O.
        • Chakera A.J.
        • Colclough K.
        • Ellard S.
        • et al.
        Cross-sectional and longitudinal studies suggest pharmacological treatment used in patients with glucokinase mutations does not alter glycaemia.
        Diabetologia. 2014; 57: 54-56
        • Shields B.M.
        • Hicks S.
        • Shepherd M.H.
        • Colclough K.
        • Hattersley A.T.
        • Ellard S.
        Maturity-onset diabetes of the young (MODY): how many cases are we missing?.
        Diabetologia. 2010; 53: 2504-2508
        • Pacaud D.
        • Schwandt A.
        • de Beaufort C.
        • Casteels K.
        • Beltrand J.
        • Birkebaek N.H.
        • et al.
        A description of clinician reported diagnosis of type 2 diabetes and other non-type 1 diabetes included in a large international multicentered pediatric diabetes registry (SWEET).
        Pediatr Diabetes. 2016; 17: 24-31
        • Reschke F.
        • Rohayem J.
        • Maffei P.
        • Dassie F.
        • Schwandt A.
        • de Beaufort C.
        • et al.
        Collaboration for rare diabetes: understanding new treatment options for Wolfram syndrome.
        Endocrine. 2021; 71: 626-633
        • Mayer-Davis E.J.
        • Kahkoska A.R.
        • Jefferies C.
        • Dabelea D.
        • Balde N.
        • Gong C.X.
        • et al.
        ISPAD Clinical Practice Consensus Guidelines 2018: Definition, epidemiology, and classification of diabetes in children and adolescents.
        Pediatr Diabetes. 2018; 19: 7-19
      3. Organization. 2007 [29/04/2016].; (Available from:)
      4. American Diabetes Association; European Association for the Study of Diabetes; International Federation of Clinical Chemistry and Laboratory Medicine; International Diabetes Federation. Consensus statement on the worldwide standardisation of the HbA1c measurement..
        Diabetologia. 2007; 50: 2042-2043
        • Hattersley A.T.
        • Greeley S.A.W.
        • Polak M.
        • Rubio-Cabezas O.
        • Njølstad P.R.
        • Mlynarski W.
        • et al.
        ISPAD Clinical Practice Consensus Guidelines 2018: The diagnosis and management of monogenic diabetes in children and adolescents.
        Pediatr Diabetes. 2018; 19: 47-63
        • Ross C.
        • Ward Z.J.
        • Gomber A.
        • Owais M.
        • Yeh J.M.
        • Reddy C.L.
        • et al.
        The Prevalence of Islet Autoantibodies in Children and Adolescents With Type 1 Diabetes Mellitus: A Global Scoping Review.
        Front Endocrinol (Lausanne). 2022; 13815703
        • Ziegler A.G.
        • Rewers M.
        • Simell O.
        • Simell T.
        • Lempainen J.
        • Steck A.
        • et al.
        Seroconversion to multiple islet autoantibodies and risk of progression to diabetes in children.
        JAMA. 2013; 309: 2473
        • Patel K.A.
        • Oram R.A.
        • Flanagan S.E.
        • De Franco E.
        • Colclough K.
        • Shepherd M.
        • et al.
        Type 1 Diabetes Genetic Risk Score: A Novel Tool to Discriminate Monogenic and Type 1 Diabetes.
        Diabetes. 2016; 65: 2094-2099
        • Redondo M.J.
        • Gignoux C.R.
        • Dabelea D.
        • Hagopian W.A.
        • Onengut-Gumuscu S.
        • Oram R.A.
        • et al.
        Type 1 diabetes in diverse ancestries and the use of genetic risk scores.
        Lancet Diabetes Endocrinol. 2022; 10: 597-608
        • Green A.
        • Hede S.M.
        • Patterson C.C.
        • Wild S.H.
        • Imperatore G.
        • Roglic G.
        • et al.
        Type 1 diabetes in 2017: global estimates of incident and prevalent cases in children and adults.
        Diabetologia. 2021; 64: 2741-2750
        • Sumnik Z.
        • Szypowska A.
        • Iotova V.
        • Bratina N.
        • Cherubini V.
        • Forsander G.
        • et al.
        Persistent heterogeneity in diabetes technology reimbursement for children with type 1 diabetes: The SWEET perspective.
        Pediatr Diabetes. 2019; 20: 434-443
        • Holt R.I.G.
        • DeVries J.H.
        • Hess-Fischl A.
        • Hirsch I.B.
        • Kirkman M.S.
        • Klupa T.
        • et al.
        The management of type 1 diabetes in adults. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD).
        Diabetologia. 2021; 64: 2609-2652
        • Carlsson A.
        • Shepherd M.
        • Ellard S.
        • Weedon M.
        • Lernmark Å.
        • Forsander G.
        • et al.
        Absence of Islet Autoantibodies and Modestly Raised Glucose Values at Diabetes Diagnosis Should Lead to Testing for MODY: Lessons From a 5-Year Pediatric Swedish National Cohort Study.
        Diabetes Care. 2020; 43: 82-89
        • Foster N.C.
        • Beck R.W.
        • Miller K.M.
        • Clements M.A.
        • Rickels M.R.
        • DiMeglio L.A.
        • et al.
        State of Type 1 Diabetes Management and Outcomes from the T1D Exchange in 2016–2018.
        Diabetes Technol Ther. 2019; 21: 66-72
        • Gerhardsson P.
        • Schwandt A.
        • Witsch M.
        • Kordonouri O.
        • Svensson J.
        • Forsander G.
        • et al.
        The SWEET Project 10-Year Benchmarking in 19 Countries Worldwide Is Associated with Improved HbA1c and Increased Use of Diabetes Technology in Youth with Type 1 Diabetes.
        Diabetes Technol Ther. 2021; 23: 491-499
        • Cardona-Hernandez R.
        • Schwandt A.
        • Alkandari H.
        • Bratke H.
        • Chobot A.
        • Coles N.
        • et al.
        Glycemic Outcome Associated With Insulin Pump and Glucose Sensor Use in Children and Adolescents With Type 1 Diabetes. Data From the International Pediatric Registry SWEET.
        Diabetes Care. 2021; 44: 1176-1184
        • Smedley D.
        • Smith K.R.
        • Martin A.
        • Thomas E.A.
        • McDonagh E.M.
        • Cipriani V.
        • et al.
        100,000 Genomes Pilot on Rare-Disease Diagnosis in Health Care - Preliminary Report.
        N Engl J Med. 2021; 385: 1868-1880
        • Eggermann T.
        • Elbracht M.
        • Kurth I.
        • Juul A.
        • Johannsen T.H.
        • Netchine I.
        • et al.
        Genetic testing in inherited endocrine disorders: joint position paper of the European reference network on rare endocrine conditions (Endo-ERN).
        Orphanet J Rare Dis. 2020; 15