Research Article| Volume 192, 110091, October 2022

Effects of pemafibrate on lipid metabolism in patients with type 2 diabetes and hypertriglyceridemia: A multi-center prospective observational study, the PARM-T2D study

Published:September 26, 2022DOI:


      • This prospective study investigated pemafibrate for patients with type 2 diabetes.
      • Pemafibrate reduced triglycerides and increased high-density lipoprotein-cholesterol.
      • The effects of pemafibrate on lipid profile were superior to conventional fibrates.
      • The effects of pemafibrate on liver function were superior to conventional fibrates.
      • The switch from a conventional fibrate to pemafibrate improved renal function.



      Pemafibrate, a novel selective peroxisome proliferator-activated receptor modulator, was shown to ameliorate lipid abnormalities in a phase III clinical trial of patients with type 2 diabetes mellitus (T2DM). However, its efficacy has not been demonstrated in real-world clinical practice in patients with T2DM.


      We performed a multi-center prospective observational study of the use of pemafibrate in patients with T2DM and hypertriglyceridemia versus conventional therapy, with or without a fibrate. The primary outcomes were the changes from baseline in fasting serum triglyceride (TG) and high-density lipoprotein-cholesterol (HDL-C) concentrations at week 52.


      We recruited 650 patients, and data from 504 (252 per group) were analyzed after propensity score matching. In the pemafibrate group, both TG and HDL-C showed significant improvements (p < 0.001), and several indices reflecting TG-rich lipoproteins, low-density lipoprotein-cholesterol particle size, and liver enzyme elevations were significantly ameliorated compared with the control group, but there was no difference in glycemic control markers. One of the key secondary endpoints showed that switching from conventional fibrates to pemafibrate improved eGFR but increased uric acid concentration.


      In patients with T2DM, pemafibrate has superior effects on lipid profile as well as liver and renal dysfunction to conventional fibrates.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Diabetes Research and Clinical Practice
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


      1. Rao Kondapally Seshasai S, Kaptoge S, Thompson A, et al. Diabetes mellitus, fasting glucose, and risk of cause-specific death. N Engl J Med 2011; 364(9): 829–41. 10.1056/NEJMoa1008862[published Online First: Epub Date]|.

        • Libby P.
        The Forgotten Majority.
        J Am Coll Cardiol. 2005; 46: 1225-1228
        • Wong N.D.
        • Zhao Y.
        • Quek R.G.W.
        • Blumenthal R.S.
        • Budoff M.J.
        • Cushman M.
        • et al.
        Residual atherosclerotic cardiovascular disease risk in statin-treated adults: The Multi-Ethnic Study of Atherosclerosis.
        J Clin Lipidol. 2017; 11: 1223-1233
        • Sone H.
        • Tanaka S.
        • Tanaka S.
        • Iimuro S.
        • Oida K.
        • Yamasaki Y.
        • et al.
        Serum Level of Triglycerides Is a Potent Risk Factor Comparable to LDL Cholesterol for Coronary Heart Disease in Japanese Patients with Type 2 Diabetes: Subanalysis of the Japan Diabetes Complications Study (JDCS).
        J Clin Endocrinol Metabolism. 2011; 96: 3448-3456
        • Hirano T.
        Pathophysiology of Diabetic Dyslipidemia.
        J Atheroscler Thromb. 2018; 25: 771-782
        • Hayashi T.
        • Koba S.
        • Ito Y.
        • Hirano T.
        Method for estimating high sdLDL-C by measuring triglyceride and apolipoprotein B levels.
        Lipids Health Dis. 2017; 16
        • Lee M.
        • Saver J.L.
        • Towfighi A.
        • Chow J.
        • Ovbiagele B.
        Efficacy of fibrates for cardiovascular risk reduction in persons with atherogenic dyslipidemia: A meta-analysis.
        Atherosclerosis. 2011; 217: 492-498
      2. Group AS, Ginsberg HN, Elam MB, et al. Effects of combination lipid therapy in type 2 diabetes mellitus. N Engl J Med 2010; 362(17): 1563–74. 10.1056/NEJMoa1001282[published Online First: Epub Date]|.

      3. Keech A, Simes RJ, Barter P, et al. Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): randomised controlled trial. Lancet 2005; 366(9500): 1849–61. 10.1016/S0140-6736(05)67667-2[published Online First: Epub Date]|.

      4. Polanco N, Hernandez E, Gonzalez E, et al. [Fibrate-induced deterioration of renal function]. Nefrologia 2009;29(3):208-13 10.3265/Nefrologia.2009.29.3.5152.en.full[published Online First: Epub Date]|.

        • Jacobson T.A.
        • Zimmerman F.H.
        Fibrates in combination with statins in the management of dyslipidemia.
        J. Clin. Hypertension. 2006; 8: 35-41
      5. Willson TM, Brown PJ, Sternbach DD, Henke BR. The PPARs: from orphan receptors to drug discovery. J Med Chem 2000; 43(4): 527–50. 10.1021/jm990554g[published Online First: Epub Date]|.

      6. Araki E, Yamashita S, Arai H, et al. Effects of Pemafibrate, a Novel Selective PPARalpha Modulator, on Lipid and Glucose Metabolism in Patients With Type 2 Diabetes and Hypertriglyceridemia: A Randomized, Double-Blind, Placebo-Controlled, Phase 3 Trial. Diabetes Care 2018; 41(3): 538–46 10.2337/dc17-1589[published Online First: Epub Date]|.

      7. Ishibashi S, Arai H, Yokote K, et al. Efficacy and safety of pemafibrate (K-877), a selective peroxisome proliferator-activated receptor alpha modulator, in patients with dyslipidemia: Results from a 24-week, randomized, double blind, active-controlled, phase 3 trial. J Clin Lipidol 2018; 12(1): 173–84. 10.1016/j.jacl.2017.10.006[published Online First: Epub Date]|.

        • Yokote K.
        • Yamashita S.
        • Arai H.
        • Araki E.
        • Matsushita M.
        • Nojima T.
        • et al.
        Effects of pemafibrate on glucose metabolism markers and liver function tests in patients with hypertriglyceridemia: a pooled analysis of six phase 2 and phase 3 randomized double‐blind placebo‐controlled clinical trials.
        Cardiovasc Diabetol. 2021; 20
        • Ikeda S.
        • Sugihara T.
        • Hoshino Y.
        • Matsuki Y.
        • Nagahara T.
        • Okano J.-I.
        • et al.
        Pemafibrate Dramatically Ameliorated the Values of Liver Function Tests and Fibrosis Marker in Patients with Non-Alcoholic Fatty Liver Disease.
        Yonago Acta Med. 2020; 63: 188-197
        • Mishima Y.A.M.
        • Kuyama A.
        • Ishioka T.
        Kibata M A simple method for identifying particle size of low-density lipoprotein using PAG electrophoresis: comparison between LipoPhor and LipoPrint LDL systems.
        J Jpn Atheroscler Soc. 1997; 25: 67-70
        • Kaneva A.M.
        • Potolitsyna N.N.
        • Bojko E.R.
        Usefulness of the LDL-C/apoB ratio in the overall evaluation of atherogenicity of lipid profile.
        Arch Physiol Biochem. 2017; 123: 16-22
        • Hirano T.
        • Ito Y.
        • Yoshino G.
        Measurement of Small Dense Low-density Lipoprotein Particles.
        JAT. 2005; 12: 67-72
      8. Schumann G, Klauke R, Canalias F, et al. IFCC primary reference procedures for the measurement of catalytic activity concentrations of enzymes at 37 degrees C. Part 9: reference procedure for the measurement of catalytic concentration of alkaline phosphatase International Federation of Clinical Chemistry and Laboratory Medicine (IFCC) Scientific Division, Committee on Reference Systems of Enzymes (C-RSE) (1)). Clin Chem Lab Med 2011; 49(9): 1439–46. 10.1515/CCLM.2011.621[published Online First: Epub Date]|.

      9. Ohsugi M, Eiki JI, Iglay K, Tetsuka J, Tokita S, Ueki K. Comorbidities and complications in Japanese patients with type 2 diabetes mellitus: Retrospective analyses of J-DREAMS, an advanced electronic medical records database. Diabetes Res Clin Pract 2021; 178: 108845. 10.1016/j.diabres.2021.108845[published Online First: Epub Date]|.

      10. Iso H, Naito Y, Sato S, et al. Serum triglycerides and risk of coronary heart disease among Japanese men and women. Am J Epidemiol 2001; 153(5): 490–9. 10.1093/aje/153.5.490[published Online First: Epub Date]|.

      11. Jun M, Foote C, Lv J, et al. Effects of fibrates on cardiovascular outcomes: a systematic review and meta-analysis. Lancet 2010; 375(9729): 1875–84. 10.1016/S0140-6736(10)60656-3[published Online First: Epub Date]|.

      12. Jansen H, Samani NJ, Schunkert H. Mendelian randomization studies in coronary artery disease. Eur Heart J 2014; 35(29): 1917–24. 10.1093/eurheartj/ehu208[published Online First: Epub Date]|.

      13. Peng J, Luo F, Ruan G, Peng R, Li X. Hypertriglyceridemia and atherosclerosis. Lipids Health Dis 2017; 16(1): 233. 10.1186/s12944-017-0625-0[published Online First: Epub Date]|.

      14. Yamamoto K, Miyoshi H, Cho KY, Nakamura A, Greenberg AS, Atsumi T. Overexpression of perilipin1 protects against atheroma progression in apolipoprotein E knockout mice. Atherosclerosis 2018; 269: 192–96. 10.1016/j.atherosclerosis.2018.01.019[published Online First: Epub Date]|.

      15. Cho KY, Miyoshi H, Nakamura A, Greenberg AS, Atsumi T. Lipid Droplet Protein PLIN1 Regulates Inflammatory Polarity in Human Macrophages and is Involved in Atherosclerotic Plaque Development by Promoting Stable Lipid Storage. J Atheroscler Thromb 2022. 10.5551/jat.63153[published Online First: Epub Date]|.

      16. St-Pierre AC, Cantin B, Dagenais GR, et al. Low-density lipoprotein subfractions and the long-term risk of ischemic heart disease in men: 13-year follow-up data from the Quebec Cardiovascular Study. Arterioscler Thromb Vasc Biol 2005; 25(3): 553–9. 10.1161/01.ATV.0000154144.73236.f4[published Online First: Epub Date]|.

      17. Berneis KK, Krauss RM. Metabolic origins and clinical significance of LDL heterogeneity. J Lipid Res 2002; 43(9): 1363–79. 10.1194/jlr.r200004-jlr200[published Online First: Epub Date]|.

      18. Authors/Task Force M, Catapano AL, Graham I, et al. 2016 ESC/EAS Guidelines for the Management of Dyslipidaemias: The Task Force for the Management of Dyslipidaemias of the European Society of Cardiology (ESC) and European Atherosclerosis Society (EAS) Developed with the special contribution of the European Assocciation for Cardiovascular Prevention & Rehabilitation (EACPR). Atherosclerosis 2016; 253: 281–344. 10.1016/j.atherosclerosis.2016.08.018[published Online First: Epub Date]|.

      19. Catapano AL, Graham I, De Backer G, et al. 2016 ESC/EAS Guidelines for the Management of Dyslipidaemias. Eur Heart J 2016; 37(39): 2999–3058. 10.1093/eurheartj/ehw272[published Online First: Epub Date]|.

      20. Yamashita S, Masuda D, Matsuzawa Y. Clinical Applications of a Novel Selective PPARalpha Modulator, Pemafibrate, in Dyslipidemia and Metabolic Diseases. J Atheroscler Thromb 2019; 26(5): 389–402. 10.5551/jat.48918[published Online First: Epub Date]|.

        • Rodriguez J.C.
        • Gil-Gomez G.
        • Hegardt F.G.
        • Haro D.
        Peroxisome proliferator-activated receptor mediates induction of the mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase gene by fatty acids.
        J Biol Chem. 1994; 269: 18767-18772
      21. Aoyama T, Peters JM, Iritani N, et al. Altered constitutive expression of fatty acid-metabolizing enzymes in mice lacking the peroxisome proliferator-activated receptor alpha (PPARalpha). J Biol Chem 1998; 273(10): 5678–84. 10.1074/jbc.273.10.5678[published Online First: Epub Date]|.

      22. Gervois P, Kleemann R, Pilon A, et al. Global suppression of IL-6-induced acute phase response gene expression after chronic in vivo treatment with the peroxisome proliferator-activated receptor-alpha activator fenofibrate. J Biol Chem 2004; 279(16): 16154–60. 10.1074/jbc.M400346200[published Online First: Epub Date]|.

      23. Seko Y, Yamaguchi K, Umemura A, et al. Effect of pemafibrate on fatty acid levels and liver enzymes in non-alcoholic fatty liver disease patients with dyslipidemia: A single-arm, pilot study. Hepatol Res 2020; 50(12): 1328–36 10.1111/hepr.13571[published Online First: Epub Date]|.

      24. Nakajima A, Eguchi Y, Yoneda M, et al. Randomised clinical trial: Pemafibrate, a novel selective peroxisome proliferator-activated receptor alpha modulator (SPPARMalpha), versus placebo in patients with non-alcoholic fatty liver disease. Aliment Pharmacol Ther 2021; 54(10): 1263–77. 10.1111/apt.16596[published Online First: Epub Date]|.

      25. Hatanaka T, Kakizaki S, Saito N, et al. Impact of Pemafibrate in Patients with Hypertriglyceridemia and Metabolic Dysfunction-associated Fatty Liver Disease Pathologically Diagnosed with Non-alcoholic Steatohepatitis: A Retrospective, Single-arm Study. Intern Med 2021; 60(14): 2167–74. 10.2169/internalmedicine.6574-20[published Online First: Epub Date]|.

      26. Hatanaka T, Kosone T, Saito N, et al. Effect of 48-week pemafibrate on non-alcoholic fatty liver disease with hypertriglyceridemia, as evaluated by the FibroScan-aspartate aminotransferase score. JGH Open 2021; 5(10): 1183–89. 10.1002/jgh3.12650[published Online First: Epub Date]|.

      27. Shinozaki S, Tahara T, Lefor AK, Ogura M. Pemafibrate improves hepatic inflammation, function and fibrosis in patients with non-alcoholic fatty liver disease: a one-year observational study. Clin Exp Hepatol 2021; 7(2): 172–77. 10.5114/ceh.2021.106864[published Online First: Epub Date]|.

      28. Shinozaki S, Tahara T, Lefor AK, Ogura M. Pemafibrate decreases markers of hepatic inflammation in patients with non-alcoholic fatty liver disease. Clin Exp Hepatol 2020; 6(3): 270–74. 10.5114/ceh.2020.99528[published Online First: Epub Date]|.

      29. Ikeda S, Sugihara T, Kihara T, et al. Pemafibrate Ameliorates Liver Dysfunction and Fatty Liver in Patients with Non-Alcoholic Fatty Liver Disease with Hypertriglyceridemia: A Retrospective Study with the Outcome after a Mid-Term Follow-Up. Diagnostics (Basel) 2021; 11(12). 10.3390/diagnostics11122316[published Online First: Epub Date]|.

      30. Yanai H, Katsuyama H, Hakoshima M. A significant increase of estimated glomerular filtration rate after switching from fenofibrate to pemafibrate in type 2 diabetic patients. Cardiol Res 2021; 12(6): 358–62. 10.14740/cr1333[published Online First: Epub Date]|.

      31. Hottelart C, El Esper N, Rose F, Achard JM, Fournier A. Fenofibrate increases creatininemia by increasing metabolic production of creatinine. Nephron 2002; 92(3): 536–41. 10.1159/000064083[published Online First: Epub Date]|.

      32. Davis TM, Ting R, Best JD, et al. Effects of fenofibrate on renal function in patients with type 2 diabetes mellitus: the Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) Study. Diabetologia 2011; 54(2): 280–90. 10.1007/s00125-010-1951-1[published Online First: Epub Date]|.

      33. Zhang J, Ji X, Dong Z, et al. Impact of fenofibrate therapy on serum uric acid concentrations: a review and meta-analysis. Endocr J 2021; 68(7): 829–37. 10.1507/endocrj.EJ20-0808[published Online First: Epub Date]|.

      34. Derosa G, Maffioli P, Sahebkar A. Plasma uric acid concentrations are reduced by fenofibrate: A systematic review and meta-analysis of randomized placebo-controlled trials. Pharmacol Res 2015; 102: 63–70. 10.1016/j.phrs.2015.09.012[published Online First: Epub Date]|.