Advertisement

Transdermal drug delivery systems for the effective management of type 2 diabetes mellitus: A review

      Highlights

      • Comprehensively reported the developments of transdermal researches in the delivery of insulin.
      • Identified the prevailing research gaps/vital shortcomings of the current transdermal researches.
      • Presented potential research avenues for the prospective TDDS research.

      Abstract

      Type 2 Diabetes mellitus (T2DM) is characterized by either insufficient insulin production or the inability to take it up for the glycemic regulation in the human body. According to WHO reports, T2DM will be the seventh-largest syndrome resulting in mortality by 2030. To tackle this chronic metabolic disorder, the person with diabetes population depends on subcutaneous administration (Sub-Q) of insulin and certain oral hypoglycemic drugs. However, these current invasive practices suffered from painful injections, needle phobia, multiple doses, risk of infection and poor-patient compliance. Hence, the search for a non-invasive and patient-friendly insulin administration system was high in the past decades leading to the development of Transdermal Drug Delivery Systems (TDDS). These can offer rapid and sustained release of therapeutic compounds at controlled rates with no pain during the administration. In recent years, the usage of such TDDS has been increasing at an exponential rate in Type 2 diabetes management. In the present review, the scholarly works on the different modes of TDDS were comprehensively reported chronlogically to appreciate their developments. Conclusively, this review critically identified prevailing research gaps in the current TDDS research and presented potential research hotspots for the prospect development in T2DM management.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Diabetes Research and Clinical Practice
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Akram M.
        • Naqvi S.B.
        • Khan A.
        Design and development of insulin emulgel formulation for transdermal drug delivery and its evaluation.
        Pak J Pharm Sci. 2013; 26 (PMID: 23455203): 323-332
        • Alkilani A.Z.
        • McCrudden M.T.C.
        • Donnelly R.F.
        Transdermal Drug Delivery: Innovative Pharmaceutical Developments Based on Disruption of the Barrier Properties of the Stratum Corneum.
        Pharmaceutics. 2015; 7: 438-470https://doi.org/10.3390/pharmaceutics7040438
      1. Andrews S, Lee JW, Choi SO, Prausnitz MR. Transdermal insulin delivery using microdermabrasion. Pharm Res. 2011; 28(9): 2110–8. doi: 10.1007/s11095-011-0435-4. Epub 2011 Apr 16. PMID: 21499837; PMCID: PMC3152630.

        • Arora R.
        • Aggarwal G.
        • Harikumar S.L.
        • Kaur K.
        Nanoemulsion based hydrogel for enhanced transdermal delivery of ketoprofen.
        Adv Pharm. 2014; 12468456
        • Bakh N.A.
        • Cortinas A.B.
        • Weiss M.A.
        • Langer R.S.
        • Anderson D.G.
        • Gu Z.
        • et al.
        Glucose-responsive insulin by molecular and physical design.
        Nat Chem. 2017; 9 ([PubMed: 28937662]): 937
      2. Bohannon N, Bergenstal R, Cuddihy R, Kruger D, List S, Massaro E, et al. Comparison of a novel insulin bolus-patch with pen/syringe injection to deliver mealtime insulin for efficacy, preference, and quality of life in adults with diabetes: a randomized, crossover, multicenter study. Diabetes Technol Ther 2011; 13(10): 1031–7. doi: 10.1089/dia.2011.0047. Epub 2011 Jul 6. PMID: 21732797; PMCID: PMC4346544.

      3. Boucaud, A. Tessier, L. Machet, L. Vaillant L, Patat F. Transdermal delivery of insulin using low frequency ultrasound. In: 2000 IEEE Ultrasonics Symposium. Proceedings. An International Symposium (Cat. No.00CH37121), 2000, pp. 1453-1456 vol.2, doi: 10.1109/ULTSYM.2000.921597.

        • Cevc G.
        • Gebauer D.
        • Stieber J.
        • Schätzlein A.
        • Blume G.
        Ultraflexible vesicles, Transfersomes, have an extremely low pore penetration resistance and transport therapeutic amounts of insulin across the intact mammalian skin.
        Biochim Biophys Acta. 1998; 1368 (PMID: 9459598): 201-215https://doi.org/10.1016/s0005-2736(97)00177-6
        • Cevc G.
        Transdermal drug delivery of insulin with ultradeformable carriers.
        Clin Pharmacokinet. 2003; 42 (PMID: 12739984): 461-474https://doi.org/10.2165/00003088-200342050-00004
        • Chang M.
        • Li X.
        • Sun Y.
        • et al.
        Effect of cationic cyclopeptides on transdermal and transmembrane delivery of insulin.
        Mol Pharm. 2013; 10: 951-957https://doi.org/10.1021/mp300667p
        • Chen B.Z.
        • Zhang L.Q.
        • Xia Y.Y.
        • Zhang X.P.
        • Guo X.D.
        A basal-bolus insulin regimen integrated microneedle patch for intraday postprandial glucose control.
        Sci Adv. 2020; 6: eaba7260https://doi.org/10.1126/sciadv.aba7260
        • Chen C.H.
        • Shyu V.B.
        • Chen C.T.
        Dissolving Microneedle Patches for Transdermal Insulin Delivery in Diabetic Mice: Potential for Clinical Applications.
        Materials (Basel). 2018; 11: 1625
        • Chen H.
        • Zhu H.
        • Zheng J.
        • Mou D.
        • Wan J.
        • Zhang J.
        • et al.
        Iontophoresis-driven penetration of nanovesicles through microneedle-induced skin microchannels for enhancing transdermal delivery of insulin.
        J Control Release. 2009; 139 (Epub 2009 May 28 PMID: 19481577): 63-72https://doi.org/10.1016/j.jconrel.2009.05.031
        • Chen M.
        • Ming-Hung L.
        • Setiawan K.
        Poly-γ-glutamic acid microneedles with a supporting structure design as a potential tool for transdermal delivery of insulin.
        Acta Biomater. 2015; 24https://doi.org/10.1016/j.actbio.2015.06.021
        • Chen Y.
        • Shen Y.
        • Guo X.
        • et al.
        Transdermal protein delivery by a coadministered peptide identified via phage display.
        Nat Biotechnol. 2006; 24: 455-460https://doi.org/10.1038/nbt1193
        • Coulman S.A.
        • Anstey A.
        • Gateley C.
        • Morrissey A.
        • McLoughlin P.
        • Allender C.
        • et al.
        Microneedle mediated delivery of nanoparticles into human skin.
        Int J Pharm. 2009; 366: 190-200
        • Economidou S.N.
        • Pere C.P.P.
        • Reid A.
        • Uddin M.J.
        • Windmill J.F.C.
        • Lamprou D.A.
        • et al.
        3D printed microneedle patches using stereolithography (SLA) for intradermal insulin delivery.
        Mater Sci Eng C Mater Biol Appl. 2019; 102 (Epub 2019 Apr 22 PMID: 31147046): 743-755https://doi.org/10.1016/j.msec.2019.04.063
        • Galer B.S.
        Clinical significance of transdermal lidocaine patch.
        Drug Deliv Syst. 2003; 18: 228
        • Gill H.S.
        • Denson D.D.
        • Burris B.A.
        • Prausnitz M.R.
        Effect of microneedle design on pain in human volunteers.
        Clin J Pain. 2008; 24: 585-594
      4. Ginsberg BH. Patch Pumps for Insulin. J Diabetes Sci Technol 2019; 13(1): 27–33. doi: 10.1177/1932296818786513. Epub 2018 Aug 2. PMID: 30070604; PMCID: PMC6313281.

        • Giudice E.L.
        • Campbell J.D.
        Needle-free vaccine delivery.
        Adv Drug Del Rev. 2006; 58: 68-89
      5. Global Transdermal Drug Delivery Market Analysis Opportunity Outlook 2024, https://www.researchnester.com/reports/global-transdermal-drug-delivery-market-analysis-opportunity-outlook-2024/111.

        • Godin B.
        • Touitou E.
        Transdermal skin delivery: predictions for humans from in vivo, ex vivo and animal models.
        Adv Drug Del Rev. 2007; 59: 1152-1161
        • Guo J.
        • Ping Q.
        • Zhang L.
        Transdermal delivery of insulin in mice by using lecithin vesicles as a carrier.
        Drug Deliv. 2000; 7: 113-116https://doi.org/10.1080/107175400266687
        • Hall K.A.
        • Keks N.A.
        • O'Connor D.
        Transdermal estrogen patches for aggressive behavior in male patients with dementia: a randomized, controlled trial.
        Int Psychogeriatr. 2005; 17 (165±78)
        • Han C.
        • Jung P.
        • Sanders S.W.
        • Lin E.T.
        • Benet L.Z.
        Pharmacokinetics of nitroglycerin and its four metabolites during nitroglycerin transdermal administration.
        Biopharm Drug Dispos. 2006; 15 (179±83)
        • Hao J.S.
        • Zheng J.M.
        • Yang W.Z.
        Transdermal iontophoresis of insulin: effect of penetration enhancers on blood glucose level in diabetic rats.
        Yao Xue Xue Bao. 1995; 30 (Chinese PMID: 8701733): 776-780
        • Harjoh N.
        • Wui Wong T.
        • Caramella C.
        Transdermal insulin delivery with microwave and fatty acids as permeation enhancers.
        Int J Pharm. 2020; : 119416https://doi.org/10.1016/j.ijpharm.2020.119416
        • Hovorka R.
        Closed-loop insulin delivery: from bench to clinical pract ice.
        Nat Rev Endocrinol. 2011; 7 ([PubMed: 21343892]): 385
        • Hu X.
        • Yu J.
        • Qian C.
        • Lu Y.
        • Kahkoska A.R.
        • Xie Z.
        • et al.
        H2O2-Responsive Vesicles Integrated with Transcutaneous Patches for Glucose-Mediated Insulin Delivery.
        ACS Nano. 2017; 11: 613-620https://doi.org/10.1021/acsnano.6b06892
      6. Ita KB. Transdermal drug delivery: progress and challenges. J Drug Deliv Sci Technol 2014; 24(3): 245–250, ISSN 1773-2247, https://doi.org/10.1016/S1773-2247(14)50041-X.

        • Ito Y.
        • Nakahigashi T.
        • Yoshimoto N.
        • Ueda Y.
        • Hamasaki N.
        • Takada K.
        Transdermal Insulin Application System with Dissolving Microneedles.
        Diabetes Technol Ther. 2012; : 891-899
        • Iyer H.
        • Khedkar A.
        • Verma M.
        Oral insulin–a review of current status, Diabetes.
        Obes Metab. 2010; 12 ([PubMed: 20151994]): 179-185
        • Jabbari N.
        • Mikaili P.
        • Asghari M.H.
        • Ahmadin H.
        Eucerin impedes transdermal insulin delivery by sonophoresis in rats.
        J Appl Pharmaceut Sci. 2016; 6: 195-199
      7. Jain S, Jain V, Mahajan SC. Lipid Based Vesicular Drug Delivery Systems. Adv Pharmaceut 2014; 2014: 574673, 12 pages. https://doi.org/10.1155/2014/574673.

        • Jiang G.
        • Xu B.
        • Zhu J.
        • Zhang Y.
        • Liu T.
        • Song G.
        Polymer microneedles integrated with glucose-responsive mesoporous bioactive glass nanoparticles for transdermal delivery of insulin.
        Biomed Phys Eng Express. 2019; https://doi.org/10.1088/2057-1976/ab3202
        • Jin X.
        • Zhu D.D.
        • Chen B.Z.
        • Ashfaq M.
        • Guo X.D.
        Insulin delivery systems combined with microneedle technology.
        Adv Drug Deliv Rev. 2018; 1 (Epub 2018 Mar 29 PMID: 29604374): 119-137https://doi.org/10.1016/j.addr.2018.03.011
      8. Jorge Ludmilla R, Harada Liliam K, Silva Erica C, Campos Welida F, Moreli Fernanda C, Shimamoto Gustavo, et al. Non-invasive Transdermal Delivery of Human Insulin Using Ionic Liquids: In vitro Studies. Front Pharmacol 2020; 11: 243., doi:10.3389/fphar.2020.00243.

        • Karande P.
        • Jain A.
        • Ergun K.
        • Kipersky V.
        • Mitragotri S.
        Design principles of chemical penetration enhancers for transdermal drug delivery.
        Proc Natl Acad Sci USA. 2005; 102: 4688-4693
        • Khafagy E.-S.
        • Morishita M.
        • Onuki Y.
        • Takayama K.
        Current challenges in non-invasive insulin delivery systems: a comparative review.
        Adv Drug Del Rev. 2007; 59: 1521-1546
        • King M.J.
        • Badea I.
        • Solomon J.
        • Kumar P.
        • Gaspar K.J.
        • Foldvari M.
        Transdermal delivery of insulin from a novel biphasic lipid system in diabetic rats.
        Diabetes Technol Ther. 2002; 4 (PMID: 12396742): 479-488https://doi.org/10.1089/152091502760306562
        • King M.J.
        • Michel D.
        • Foldvari M.
        Evidence for lymphatic transport of insulin by topically applied biphasic vesicles.
        J Pharm Pharmacol. 2003; 55 (PMID: 14607014): 1339-1344https://doi.org/10.1211/0022357021918
        • Lakhtakia R.
        The history of diabetes mellitus.
        SQUMJ. 2013; 13: 368-370
        • Lane M.E.
        Skin penetration enhancers.
        Int J Pharm. 2013; 447 ([PubMed: 23462366]): 12-21
        • Langkjaer L.
        • Brange J.
        • Grodsky G.M.
        • Guy R.H.
        Iontophoresis of monomeric insulin analogues in vitro: effects of insulin charge and skin pretreatment.
        J Control Release. 1998; 51 (PMID: 9685903): 47-56https://doi.org/10.1016/s0168-3659(97)00155-7
        • Lee I.C.
        • Lin W.M.
        • Shu J.C.
        • Tsai S.W.
        • Chen C.H.
        • Tsai M.T.
        Formulation of two-layer dissolving polymeric microneedle patches for insulin transdermal delivery in diabetic mice.
        J Biomed Mater Res A. 2017; 105 (Epub 2016 Aug 29 PMID: 27539509): 84-93https://doi.org/10.1002/jbm.a.35869
        • Lee J.W.
        • Park J.H.
        • Prausnitz M.R.
        Dissolving microneedles for transdermal drug delivery.
        Biomaterials. 2008; 29: 2113-2124
        • Leeladurga V.
        • Teja U.C.
        • Sultana S.K.A.
        • et al.
        Application of Microneedle Arrays for Enhancement of Transdermal Permeation of Insulin. In Vitro Experiments, Scaling Analyses and Numerical Simulations.
        AAPS PharmSciTech. 2016; 17: 915-922https://doi.org/10.1208/s12249-015-0416-8
        • Li Y.
        • Quan Y.
        • Zang L.
        • Jin M.
        • Kamiyama F.
        • Katsumi H.
        • et al.
        Trypsin as a novel potential absorption enhancer for improving the transdermal delivery of macromolecules.
        J Pharm Pharmacol. 2009; 61: 1005-1012
        • Li Y.
        • Yang J.
        • Zheng Y.
        • Ye R.
        • Liu B.
        • Huang Y.
        • et al.
        Iontophoresis-driven Porous Microneedle Array Patch for Active Transdermal Drug Delivery.
        Acta Biomater. 2021; 121: 349-358
        • Li Y.Z.
        • Quan Y.S.
        • Zang L.
        • Jin M.N.
        • Kamiyama F.
        • Katsumi H.
        • et al.
        Trypsin as a novel potential absorption enhancer for improving the transdermal delivery of macromolecules.
        J Pharm Pharmacol. 2009; 61 (PMID: 19703343): 1005-1012https://doi.org/10.1211/jpp/61.08.0003
        • Li Y.Z.
        • Quan Y.S.
        • Zang L.
        • Jin M.N.
        • Kamiyama F.
        • Katsumi H.
        • et al.
        Transdermal delivery of insulin using trypsin as a biochemical enhancer.
        Biol Pharm Bull. 2008; 31 (PMID: 18670091): 1574-1579https://doi.org/10.1248/bpb.31.1574
        • Ling M.H.
        • Chen M.C.
        Dissolving polymer microneedle patches for rapid and efficient transdermal delivery of insulin to diabetic rats.
        Acta Biomater. 2013; 9: 8952-8961
      9. Lio ACS, Chia RN, Kwek MSY, Wiraja C, Madden LE, Chang H, et al. Temporal pressure enhanced topical drug delivery through micropore formation. Sci Adv 2020; 6(22): eaaz6919, DOI: 10.1126/sciadv.aaz6919.

        • Liu S.
        • Mei-na J.
        • Ying-shu Q.
        • Fumio K.
        • Hidemasa K.
        • Toshiyasu S.
        • et al.
        The Development and Characteristics of Novel Microneedle Arrays Fabricated from Hyaluronic Acid, and their Application in the Transdermal Delivery of Insulin.
        J Control Release. 2012; 161: 933-941
        • Luo H.
        • Li H.
        • Yang X.
        • Li J.
        • Zhang X.
        • Wu Z.
        A Nanoscale Polymeric Penetration Enhancer Based on Polylysine for Topical Delivery of Proteins and Peptides.
        J Pharm Sci. 2016; 105: 3585-3593https://doi.org/10.1016/j.xphs.2016.08.022
        • Luo F.Q.
        • Chen G.
        • Xu W.
        • et al.
        Microneedle-array patch with pH-sensitive formulation for glucose-responsive insulin delivery.
        Nano Res. 2021; https://doi.org/10.1007/s12274-020-3273-z
      10. Malakar J, Sen SO, Nayak AK, Sen KK. Development and evaluation of microemulsions for transdermal delivery of insulin. ISRN Pharm 2011; 2011: 780150. doi: 10.5402/2011/780150. Epub 2011 Jul 7. PMID: 22389858; PMCID: PMC3263709.

        • Malakar J.
        • Sen S.O.
        • Nayak A.K.
        • Sen K.K.
        Formulation, optimization and evaluation of transferosomal gel for transdermal insulin delivery.
        Saudi Pharm J. 2012; 20 (Epub 2012 Feb 21. PMID: 23960810; PMCID: PMC3744964): 355-363https://doi.org/10.1016/j.jsps.2012.02.001
        • Marro D.
        • Kalia Y.N.
        • Delgado-Charro M.B.
        • Guy R.H.
        Contributions of electromigration and electroosmosis to iontophoretic drug delivery.
        Pharm Res. 2001; 18: 1701e8
        • Martanto W.
        • Moore J.S.
        • Kashlan O.
        • Kamath R.
        • Wang P.M.
        • O’Neal J.M.
        • et al.
        Microinfusion using hollow microneedles.
        Pharm Res. 2006; 23: 104-113
        • Marwah H.
        • Garg T.
        • Rath G.
        • Goyal A.K.
        Development of transferosomal gel for trans-dermal delivery of insulin using iodine complex.
        Drug Deliv. 2016; 23 (Epub 2016 Mar 28 PMID: 27187718): 1636-1644https://doi.org/10.3109/10717544.2016.1155243
      11. Mbaye G, Ndiaye A, Diouf LA, Diallo AS, Diedhiou A, Sene M, et al. Developpement d'une matrice ethylcellulose/eudragit pour la liberation controlee et continue de l'insuline [Development of Ethylcellulose/Eudragit matrix for controlled and continuous release of insulin]. Mali Med 2009; 24(3): 11–6. French. PMID: 20093223.

        • McAllister D.V.
        • Wang P.M.
        • Davis S.P.
        • Park J.H.
        • Canatella P.J.
        • Allen M.G.
        • et al.
        Microfabricated needles for transdermal delivery of macromolecules and nanoparticles: Fabrication methods and transport studies.
        Proc Natl Acad Sci USA. 2003; 100: 13755-13760
        • Misso M.L.
        • Egberts K.J.
        • Page M.
        • O’connor D.
        • Shaw J.
        Cochrane review: Continuous subcutaneous insulin infusion (CSII) versus multiple insulin injections for type 1 diabetes mellitus.
        Evid Based Child Health. 2010; 5: 1726-1867
        • Mitragotri S.
        • Burke P.A.
        • Langer R.
        Overcoming the challenges in administering biopharmaceuticals: formulation and delivery strategies.
        Nat Rev Drug discov. 2014; 13 ([PubMed: 25103255]): 655
        • Mo R.
        • Jiang T.
        • Di J.
        • Tai W.
        • Gu Z.
        Emerging micro-and nanotechnology based synthetic approaches for insulin delivery.
        Chem Soc Rev. 2014; 43 ([PubMed: 24626293]): 3595-3629
      12. Mohammad EA, Elshemey WM, Elsayed AA, Abd-Elghany AA. Electroporation Parameters for Successful Transdermal Delivery of Insulin. Am J Ther. 2016; 23(6): e1560–e1567. doi: 10.1097/MJT.0000000000000198. PMID: 25782568.

        • Morris A.D.
        • Boyle D.I.
        • McMahon A.D.
        • Greene S.A.
        • MacDonald T.M.
        • Newton R.W.
        • et al.
        Adherence to insulin treatment, glycaemic control, and ketoacidosis in insulin-dependent diabetes mellitus.
        The Lancet. 1997; 350: 1505-1510
        • Murthy S.N.
        • Zhao Y.L.
        • Marlan K.
        • Hui S.W.
        • Kazim A.L.
        • Sen A.
        Lipid and electroosmosis enhanced transdermal delivery of insulin by electroporation.
        J Pharm Sci. 2006; 95 (PMID: 16850446): 2041-2050https://doi.org/10.1002/jps.20682
        • Murugesan D.
        • Arunachalam T.
        • Ramamurthy V.
        • Subramanian S.
        Association of polymorphisms in leptin receptor gene with obesity and type 2 diabetes in the local population of Coimbatore.
        Indian J Hum Genet. 2010; 16: 72-77https://doi.org/10.4103/0971-6866.69350
        • Nose K.
        • Pissuwan D.
        • Goto M.
        • Katayama Y.
        • Niidome T.
        Gold nanorods in an oil-base formulation for transdermal treatment of type 1 diabetes in mice.
        Nanoscale. 2012; 4: 3776https://doi.org/10.1039/c2nr30651d
        • Ogiso T.
        • Nishioka S.
        • Iwaki M.
        Dissociation of insulin oligomers and enhancement of percutaneous absorption of insulin.
        Biol Pharm Bull. 1996; 19 (PMID: 8874814): 1049-1054https://doi.org/10.1248/bpb.19.1049
        • Ohkubo Y.
        • Kishikawa H.
        • Araki E.
        • Miyata T.
        • Isami S.
        • Motoyoshi S.
        • et al.
        Intensive insulin therapy prevents the progression of diabetic microvascular complications in Japanese patients with non-insulin-dependent diabetes mellitus: a randomized prospective 6-year study.
        Diabetes Res Clin Pract. 1995; 28: 103-117
        • Owens D.R.
        New horizons-alternative routes for insulin therapy.
        Nat Rev Drug Discov. 2002; 1 ([PubMed: 12120259]): 529
        • Owens D.R.
        • Zinman B.
        • Bolli G.
        Alternative routes of insulin delivery.
        Diabet Med. 2003; 20 ([PubMed: 14632713]): 886-898
        • Pagneux Q.
        • Ye R.
        • Chengnan L.
        • Barras A.
        • Hennuyer N.
        • Staels B.
        • et al.
        Electrothermal patches driving the transdermal delivery of insulin.
        Nanoscale Horiz. 2020; 5: 663-670
        • Pan Y.
        • Zhao H.Y.
        • Zheng J.M.
        The enhancing effect of electroporation and iontophoresis on the permeation of insulin through human skin.
        Yao Xue Xue Bao. 2002; 37 (Chinese PMID: 12567783): 649-652
        • Park E.J.
        • Dodds J.
        • Smith N.B.
        Dose comparison of ultrasonic transdermal insulin delivery to subcutaneous insulin injection.
        Int J Nanomedicine. 2008; 3: 335-341https://doi.org/10.2147/ijn.s2761
        • Pettis R.J.
        • Hirsch L.
        • Kapitza C.
        • Nosek L.
        • Hövelmann U.
        • Kurth H.J.
        • et al.
        Microneedle-based intradermal versus subcutaneous administration of regular human insulin or insulin lispro: pharmacokinetics and postprandial glycemic excursions in patients with type 1 diabetes.
        Diabetes Technol Ther. 2011; 13 (Epub 2011 Feb 28 PMID: 21355716): 443-450https://doi.org/10.1089/dia.2010.0183
        • Pickup J.
        • Keen H.
        Continuous subcutaneous insulin infusion at 25 years: evidence base for the expanding use of insulin pump therapy in type 1 diabetes.
        Diabetes Care. 2002; 25 ([PubMed: 11874953]): 593-598
        • Pillai O.
        • Borkute S.D.
        • Sivaprasad N.
        • Panchagnula R.
        Transdermal iontophoresis of insulin. II Physicochemical considerations.
        Int J Pharm. 2003; 254 (PMID: 12623203): 271-280https://doi.org/10.1016/s0378-5173(03)00034-6
        • Pillai O.
        • Kumar N.
        • Dey C.S.
        • Borkute S.
        • Nagalingam S.
        • Panchagnula R.
        Transdermal iontophoresis of insulin. Part 1: A study on the issues associated with the use of platinum electrodes on rat skin.
        J Pharm Pharmacol. 2003; 55 (PMID: 14713361): 1505-1513https://doi.org/10.1211/0022357022197
      13. Pillai O, Kumar N, Dey CS, Borkute, Sivaprasad N, Panchagnula R. Transdermal iontophoresis of insulin: III. Influence of electronic parameters. Methods Find Exp Clin Pharmacol 2004; 26(6): 399–408. PMID: 15349135.

        • Pillai O.
        • Panchagnula R.
        Transdermal iontophoresis of insulin. V. Effect of terpenes.
        J Control Release. 2003; 88 (PMID: 12628335): 287-296https://doi.org/10.1016/s0168-3659(03)00065-8
      14. Ping W, Yuan-yuan Y, Jia-li B, Xiao-an W. Enhanced transdermal insulin delivery by electroporation. In: 2008 International Conference on Technology and Applications in Biomedicine; 2008. doi:10.1109/itab.2008.4570604.

        • Prausnitz M.R.
        • Langer R.
        Transdermal drug delivery.
        Nat Biotechnol. 2008; 26 ([PubMed: 18997767]): 1261
        • Prausnitz M.R.
        • Mitragotri S.
        • Langer R.
        Current status and future potential of transdermal drug delivery.
        Nat Rev Drug discov. 2004; 3 ([PubMed: 15040576]): 115
        • Prausnitz M.R.
        Microneedles for transdermal drug delivery.
        Adv Drug Deliv Rev. 2004; 56: 581-587
        • Priborsky J.
        • Takayama K.
        • Nagai T.
        • Waitzova D.
        • Elis J.C.
        Evaluation of in vitro and in situ transdermal absorption of drugs in pig and rat skin.
        Chem Pharm Bull (Tokyo). 1987; 35: 4915-4920
        • Qiu Y.
        • Qin G.
        • Zhang S.
        • Wu Y.
        • Xu B.
        • Gao Y.
        Novel lyophilized hydrogel patches for convenient and effective administration of microneedle-mediated insulin delivery.
        Int J Pharm. 2012; 437 (Epub 2012 Jul 27 PMID: 22842625): 51-56https://doi.org/10.1016/j.ijpharm.2012.07.035
        • Rastogi R.
        • Anand S.
        • Dinda A.K.
        • Koul V.
        Investigation on the synergistic effect of a combination of chemical enhancers and modulated iontophoresis for transdermal delivery of insulin.
        Drug Dev Ind Pharm. 2010; 36 (PMID: 20334541): 993-1004https://doi.org/10.3109/03639041003682012
        • Rastogi R.
        • Anand S.
        • Koul V.
        Electroporation of polymeric nanoparticles: an alternative technique for transdermal delivery of insulin.
        Drug Dev Ind Pharm. 2010; 36 (PMID: 20849347): 1303-1311https://doi.org/10.3109/03639041003786193
        • Rastogi S.K.
        • Singh J.
        Effect of chemical penetration enhancer and iontophoresis on the in vitro percutaneous absorption enhancement of insulin through porcine epidermis.
        Pharm Dev Technol. 2005; 10 (PMID: 15776817): 97-104https://doi.org/10.1081/pdt-49679
        • Ravaine V.
        • Ancla C.
        • Catargi B.
        Chemically controlled closed-loop insulin delivery.
        J Control Release. 2008; 132 ([PubMed: 18782593]): 2-11
        • Ross S.
        • Scoutaris N.
        • Lamprou D.
        • et al.
        Inkjet printing of insulin microneedles for transdermal delivery.
        Drug Deliv and Transl Res. 2015; 5: 451-461https://doi.org/10.1007/s13346-015-0251-1
        • Sadhasivam L.
        • Dey N.
        • Francis A.P.
        • Devasena T.
        Transdermal Patches of Chitosan Nanoparticles for Insulin Delivery.
        Int J Pharm Pharm Sci. 2015; 7: 84-88
      15. Sampath Kumar KP, Bhowmik D, Komala M. Transdermal Sonophoresis Technique- An Approach for Controlled Drug Delivery. Indian J Res Pharm Biotechnol 2013; 1(3): 379–381.

      16. Sattley M. The history of diabetes: diabetes health; 2015. Available from: https://www.diabeteshealth.com/the-history-of-diabetes/.

      17. Segal, M., Patches, pumps and timed release: new ways to deliver drugs. Food Drug Admin http://www.fda.gov/bbs/topics/consumer/CON00112.html, Editor. 2007.

        • Sen A.
        • Daly M.E.
        • Hui S.W.
        Transdermal insulin delivery using lipid enhanced electroporation.
        Biochim Biophys Acta. 2002; 1564 (PMID: 12100989): 5-8https://doi.org/10.1016/s0005-2736(02)00453-4
        • Seong K.Y.
        • Seo M.S.
        • Hwang D.Y.
        • O'Cearbhaill E.D.
        • Sreenan S.
        • Karp J.M.
        • et al.
        A self-adherent, bullet-shaped microneedle patch for controlled transdermal delivery of insulin.
        J Control Release. 2017; 10 (Epub 2017 Mar 24 PMID: 28344013): 48-56https://doi.org/10.1016/j.jconrel.2017.03.041
        • Shehata T.M.
        • Nair A.B.
        • Al-Dhubiab B.E.
        • Shah J.
        • Jacob S.
        • Alhaider I.A.
        • et al.
        Vesicular Emulgel Based System for Transdermal Delivery of Insulin: Factorial Design and in Vivo Evaluation.
        Appl Sci. 2020; 10: 5341https://doi.org/10.3390/app10155341
        • Sibiya N.
        • Ngubane P.
        • Mabandla M.
        Cardioprotective effects of pectin-insulin patch in streptozotocin-induced diabetic rats.
        J Diabetes. 2017; 9 (Epub 2017 May 29 PMID: 28220624): 1073-1081https://doi.org/10.1111/1753-0407.12538
        • Sintov A.C.
        • Wormser U.
        Topical iodine facilitates transdermal delivery of insulin.
        J Control Release. 2007; 118: 185-188https://doi.org/10.1016/j.jconrel.2006.12.006
        • Sivamani R.K.
        • Stoeber B.
        • Wu G.C.
        • Zhai H.
        • Liepmann D.
        • Maibach H.
        Clinical microneedle injection of methyl nicotinate: Stratum corneum penetration.
        Skin Res Technol. 2005; 11: 152-156
        • Sullivan S.P.
        • Koutsonanos D.G.
        • Del Pilar Martin M.
        • Lee J.W.
        • Zarnitsyn V.
        • Choi S.O.
        • et al.
        Dissolving polymer microneedle patches for influenza vaccination.
        Nat Med. 2010; 16: 915-920
        • Tahara Y.
        • Honda S.
        • Kamiya N.
        • et al.
        A solid-in-oil nanodispersion for transcutaneous protein delivery.
        J Control Release. 2008; 131: 14-18https://doi.org/10.1016/j.jconrel.2008.07.015
        • Tahara Y.
        • Honda S.
        • Kamiya N.
        Goto M Transdermal delivery of insulin using a solid-in-oil nanodispersion enhanced by arginine-rich peptides.
        Med Chem Commun. 2012; 3: 1496-1499
        • Tahara Y.
        • Namatsu K.
        • Kamiya N.
        • et al.
        Transcutaneous immunization by a solid-in-oil nanodispersion.
        Chem Commun (Camb). 2010; 46: 9200-9202https://doi.org/10.1039/c0cc03600e
        • Tokumoto S.
        • Higo N.
        • Sugibayashi K.
        Effect of electroporation and pH on the iontophoretic transdermal delivery of human insulin.
        Int J Pharm. 2006; 326 (Epub 2006 Jul 8 PMID: 16920293): 13-19https://doi.org/10.1016/j.ijpharm.2006.07.002
        • Trommer H.
        • Neubert R.H.
        Overcoming the stratum corneum: the modulation of skin penetration.
        Skin Pharmacol Physiol. 2006; 19: 106e21
        • Tufts M.
        • Musabayane C.
        Transdermal delivery of insulin using amidated pectin hydrogel patches.
        Endocrine Abstr. 2010; 21: P173
        • Veiseh O.
        • Tang B.C.
        • Whitehead K.A.
        • Anderson D.G.
        • Langer R.
        Managing diabetes with nanomedicine: challenges and opportunities.
        Nat Rev Drug Discov. 2015; 14 ([PubMed: 25430866]): 45
        • Wang Y.
        • Wang H.
        • Zhu J.X.X.
        • Guan Y.
        • Zhang Y.
        J Mater Chem B. 2020; https://doi.org/10.1039/D0TB01822H
        • Williams A.C.
        • Barry B.W.
        Penetration enhancers.
        Adv Drug Deliv Rev. 2004; 56: 603-618
        • Wong T.W.
        • Chen T.Y.
        • Huang C.C.
        • Tsai J.C.
        • Hui S.W.
        Painless skin electroporation as a novel way for insulin delivery.
        Diabetes Technol Ther. 2011; 13 (Epub 2011 May 20 PMID: 21599516): 929-935https://doi.org/10.1089/dia.2011.0077
        • Wu Y.
        • Gao Y.
        • Qin G.
        • Zhang S.
        • Qiu Y.
        • Li F.
        • et al.
        Sustained release of insulin through skin by intradermal microdelivery system.
        Biomed Microdevices. 2010; 12 (PMID: 20306299): 665-671https://doi.org/10.1007/s10544-010-9419-0
      18. Yang R, Wei T, Goldberg H, Wang W, Cullion K, Kohane DS. Getting Drugs Across Biological Barriers. Adv Mater 2017.

        • Yang J.
        • Li Y.
        • Ye R.
        • et al.
        Smartphone-powered iontophoresis-microneedle array patch for controlled transdermal delivery.
        Microsyst Nanoeng. 2020; 6: 112https://doi.org/10.1038/s41378-020-00224-z
      19. Yerramsetty KM, Rachakonda VK, Neely BJ, Madihally SV, Gasem KA. Effect of different enhancers on the transdermal permeation of insulin analog. Int J Pharm 2010; 398(1-2): 83–92. doi: 10.1016/j.ijpharm.2010.07.029. Epub 2010 Aug 3. PMID: 20667506; PMCID: PMC2934860.

      20. Yu J, Wang J, Zhang Y, Chen G, Mao W, Ye Y, Kahkoska AR, Buse JB, Langer R, Gu Z. Glucose-responsive insulin patch for the regulation of blood glucose in mice and minipigs. Nat Biomed Eng 2020; 4(5): 499–506. doi: 10.1038/s41551-019-0508-y. Epub 2020 Feb 3. PMID: 32015407; PMCID: PMC7231631.

      21. Yu J, Zhang,Y, Yea,Y, DiSantoa,R, Suna,W, Ransona, D, et al. Microneedle-array patches loaded with hypoxia-sensitive vesicles provide fast glucose-responsive insulin delivery. PNAS 2015; 112 (27): 8260-8265.

      22. Zejun W, Wang J, Li H, Yu J, Chen G, Kahkoska AR, et al. Dual self-regulated delivery of insulin and glucagon by a hybrid patch. Proc Natl Acad Sci 2020; 117(47): 29512–29517; DOI: 10.1073/pnas.2011099117.

      23. Zhao J, Wu Y, Chen J, Lu B, Xiong H, Tang Z, et al. In vivo monitoring of microneedle-based transdermal drug delivery of insulin. J Innov Opt Health Sci 2018; 11(5): 1850032.

        • Zhou C.P.
        • Liu Y.L.
        • Wang H.L.
        • Zhang P.X.
        • Zhang J.L.
        Transdermal delivery of insulin using microneedle rollers in vivo.
        Int J Pharm. 2010; 392: 127
        • Zhu M.
        • Liu Y.
        • Jiang F.
        • Cao J.
        • Kundu S.C.
        • Lu S.
        Combined Silk Fibroin Microneedles for Insulin Delivery.
        ACS Biomater Sci Eng. 2020; 6 (Epub 2020 May 4 PMID: 33463180): 3422-3429https://doi.org/10.1021/acsbiomaterials.0c00273