Advertisement

Comparison of renal outcomes between sodium glucose co-transporter 2 inhibitors and glucagon-like peptide 1 receptor agonists

Published:February 04, 2022DOI:https://doi.org/10.1016/j.diabres.2022.109231

      Highlights

      • The comparison between SGLT2 inhibitors and GLP-1 receptor agonists was analyzed using the propensity score matching method.
      • The incidence of the renal outcome was lower in patients with SGLT2 inhibitors than in those with GLP-1 receptor agonists.
      • SGLT2 inhibitor treatment had the superiority for the annual change in eGFR.

      Abstract

      Aims

      This study aimed to clarify the differences in how sodium glucose co-transporter 2 inhibitors (SGLT2i) and glucagon-like peptide 1 receptor agonists (GLP1Ra) influence kidney function in Japanese patients with type 2 diabetes mellitus (T2DM).

      Methods

      We retrospectively built two databases of patients with T2DM who visited the clinics of members of Kanagawa Physicians Association. We defined the renal composite outcome as either progression of albuminuria status and/or > 15% deterioration in estimated glomerular filtration rate (eGFR) per year. We used propensity score matching to compare patient outcomes after SGLT2i and GLP1Ra treatments.

      Results

      The incidence of renal composite outcomes was significantly lower in SGLT2i-treated patients than in GLP1Ra-treated patients (n = 15 [11%] and n = 27 [20%], respectively, P = 0.001). Annual eGFR changes (mL/min/1.73 m2/year) between the two groups differed significantly (−1.8 [95 %CI, −2.7, −0.9] in SGLT2i-treated patients and − 3.4 [95 %CI, −4.6, −2.2] in GLP1Ra-treated patients, P = 0.0049). The urine albumin-to-creatinine ratio changed owing to a significant interaction between the presence or absence of a decrease in systolic blood pressure and the difference in treatments (P < 0.04).

      Conclusion

      Renal composite outcome incidence was lower in SGLT2i-treated patients than in GLP1Ra-treated patients.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Diabetes Research and Clinical Practice
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Nissen S.E.
        • Wolski K.
        Effect of Rosiglitazone on the Risk of Myocardial Infarction and Death from Cardiovascular Causes.
        N Engl J Med. 2007; 356: 2457-2471
        • Green J.B.
        • Bethel M.A.
        • Armstrong P.W.
        • Buse J.B.
        • Engel S.S.
        • Garg J.
        • et al.
        Effect of Sitagliptin on Cardiovascular Outcomes in Type 2 Diabetes.
        N Engl J Med. 2015; 373: 232-242
        • White W.B.
        • Cannon C.P.
        • Heller S.R.
        • Nissen S.E.
        • Bergenstal R.M.
        • Bakris G.L.
        • et al.
        Alogliptin after Acute Coronary Syndrome in Patients with Type 2 Diabetes.
        N Engl J Med. 2013; 369: 1327-1335
        • Scirica B.M.
        • Bhatt D.L.
        • Braunwald E.
        • Steg P.G.
        • Davidson J.
        • Hirshberg B.
        • et al.
        Saxagliptin and Cardiovascular Outcomes in Patients with Type 2 Diabetes Mellitus.
        N Engl J Med. 2013; 369: 1317-1326
        • Rosenstock J.
        • Perkovic V.
        • Johansen O.E.
        • Cooper M.E.
        • Kahn S.E.
        • Marx N.
        • et al.
        Effect of Linagliptin vs Placebo on Major Cardiovascular Events in Adults With Type 2 Diabetes and High Cardiovascular and Renal Risk.
        JAMA. 2019; 321: 69https://doi.org/10.1001/jama.2018.18269
        • Zinman B.
        • Wanner C.
        • Lachin J.M.
        • Fitchett D.
        • Bluhmki E.
        • Hantel S.
        • et al.
        Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes.
        N Engl J Med. 2015; 373: 2117-2128
        • Neal B.
        • Perkovic V.
        • Mahaffey K.W.
        • de Zeeuw D.
        • Fulcher G.
        • Erondu N.
        • et al.
        Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes.
        N Engl J Med. 2017; 377: 644-657
        • Wiviott S.D.
        • Raz I.
        • Bonaca M.P.
        • Mosenzon O.
        • Kato E.T.
        • Cahn A.
        • et al.
        Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes.
        N Engl J Med. 2019; 380: 347-357
        • McDonagh T.A.
        • Metra M.
        • Adamo M.
        • Gardner R.S.
        • Baumbach A.
        • Böhm M.
        • et al.
        2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure.
        Eur Heart J. 2021; 42: 3599-3726
        • Marso S.P.
        • Daniels G.H.
        • Brown-Frandsen K.
        • Kristensen P.
        • Mann J.F.E.
        • Nauck M.A.
        • et al.
        Liraglutide and Cardiovascular Outcomes in Type 2 Diabetes.
        N Engl J Med. 2016; 375: 311-322
        • Marso S.P.
        • Bain S.C.
        • Consoli A.
        • Eliaschewitz F.G.
        • Jódar E.
        • Leiter L.A.
        • et al.
        Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes.
        N Engl J Med. 2016; 375: 1834-1844
        • Hernandez A.F.
        • Green J.B.
        • Janmohamed S.
        • D'Agostino R.B.
        • Granger C.B.
        • Jones N.P.
        • et al.
        Albiglutide and cardiovascular outcomes in patients with type 2 diabetes and cardiovascular disease (Harmony Outcomes): a double-blind, randomised placebo-controlled trial.
        Lancet. 2018; 392: 1519-1529
        • Gerstein H.C.
        • Sattar N.
        • Rosenstock J.
        • Ramasundarahettige C.
        • Pratley R.
        • Lopes R.D.
        • et al.
        Cardiovascular and Renal Outcomes with Efpeglenatide in Type 2 Diabetes.
        N Engl J Med. 2021; 385: 896-907
        • Perkovic V.
        • Jardine M.J.
        • Neal B.
        • Bompoint S.
        • Heerspink H.J.L.
        • Charytan D.M.
        • et al.
        Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy.
        N Engl J Med. 2019; 380: 2295-2306
        • Heerspink H.J.L.
        • Stefánsson B.V.
        • Correa-Rotter R.
        • Chertow G.M.
        • Greene T.
        • Hou F.-F.
        • et al.
        Dapagliflozin in Patients with Chronic Kidney Disease.
        N Engl J Med. 2020; 383: 1436-1446
        • Gerstein H.C.
        • Colhoun H.M.
        • Dagenais G.R.
        • Diaz R.
        • Lakshmanan M.
        • Pais P.
        • et al.
        Dulaglutide and renal outcomes in type 2 diabetes: an exploratory analysis of the REWIND randomised, placebo-controlled trial.
        Lancet. 2019; 394: 131-138
        • Cosentino F.
        • Grant P.J.
        • Aboyans V.
        • Bailey C.J.
        • Ceriello A.
        • Delgado V.
        • et al.
        2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD.
        Eur Heart J. 2020; 41: 255-323
        • Pharmacologic Approaches to Glycemic Treatment
        Standards of Medical Care in Diabetes—2021.
        Diabetes Care. 2021; 44: S111-S124
      1. Ministry of Health LaW. Annual trend in costs for hypoglycemic drugs. 2019:https://www.mhlw.go.jp/bunya/iryouhoken/database/zenpan/cyouzai_doukou_topics_h30.html.

        • K/DOQI
        Clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification.
        Am J Kidney Dis. 2002; 39: S1-266
        • Matsuo S.
        • Imai E.
        • Horio M.
        • Yasuda Y.
        • Tomita K.
        • Nitta K.
        • et al.
        Revised equations for estimated GFR from serum creatinine in Japan.
        Am J Kidney Dis. 2009; 53: 982-992
        • Sumida K.
        • Nadkarni G.N.
        • Grams M.E.
        • Sang Y.
        • Ballew S.H.
        • Coresh J.
        • et al.
        Conversion of Urine Protein-Creatinine Ratio or Urine Dipstick Protein to Urine Albumin-Creatinine Ratio for Use in Chronic Kidney Disease Screening and Prognosis : An Individual Participant-Based Meta-analysis.
        Ann Intern Med. 2020; 173: 426-435
        • Kobayashi K.
        • Toyoda M.
        • Hatori N.
        • Furuki T.
        • Sakai H.
        • Umezono T.
        • et al.
        Blood pressure after treatment with sodium–glucose cotransporter 2 inhibitors influences renal composite outcome: Analysis using propensity score-matched models.
        J Diabetes Investigation. 2021; 12: 74-81
        • Kobayashi K.
        • Toyoda M.
        • Hatori N.
        • Furuki T.
        • Sakai H.
        • Sato K.
        • et al.
        Sodium–glucose cotransporter 2 inhibitor-induced reduction in the mean arterial pressure improved renal composite outcomes in type 2 diabetes mellitus patients with chronic kidney disease: A propensity score-matched model analysis in Japan.
        J Diabetes Investigation. 2021; 12: 1408-1416
        • Kosiborod M.
        • Cavender M.A.
        • Fu A.Z.
        • Wilding J.P.
        • Khunti K.
        • Holl R.W.
        • et al.
        Lower Risk of Heart Failure and Death in Patients Initiated on Sodium-Glucose Cotransporter-2 Inhibitors Versus Other Glucose-Lowering Drugs.
        Circulation. 2017; 136: 249-259
        • Patorno E.
        • Pawar A.
        • Franklin J.M.
        • Najafzadeh M.
        • Déruaz-Luyet A.
        • Brodovicz K.G.
        • et al.
        Empagliflozin and the Risk of Heart Failure Hospitalization in Routine Clinical Care.
        Circulation. 2019; 139: 2822-2830
        • Nagasu H.
        • Yano Y.
        • Kanegae H.
        • Heerspink H.J.L.
        • Nangaku M.
        • Hirakawa Y.
        • et al.
        Kidney Outcomes Associated With SGLT2 Inhibitors Versus Other Glucose-Lowering Drugs in Real-world Clinical Practice: The Japan Chronic Kidney Disease Database.
        Diabetes Care. 2021;
        • Stuart E.A.
        Matching Methods for Causal Inference: A Review and a Look Forward.
        Statistical Sci. 2010; 25: 1-21
        • Austin P.C.
        Optimal caliper widths for propensity-score matching when estimating differences in means and differences in proportions in observational studies.
        Pharm Stat. 2011; 10: 150-161
        • Austin P.C.
        Balance diagnostics for comparing the distribution of baseline covariates between treatment groups in propensity-score matched samples.
        Stat Med. 2009; 28: 3083-3107
        • Zelniker T.A.
        • Wiviott S.D.
        • Raz I.
        • Im K.
        • Goodrich E.L.
        • Bonaca M.P.
        • et al.
        SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials.
        Lancet. 2019; 393: 31-39
        • Kristensen S.L.
        • Rørth R.
        • Jhund P.S.
        • Docherty K.F.
        • Sattar N.
        • Preiss D.
        • et al.
        Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials.
        Lancet Diabetes Endocrinol. 2019; 7: 776-785
        • Sattar N.
        • Lee M.M.Y.
        • Kristensen S.L.
        • Branch K.R.H.
        • Del Prato S.
        • Khurmi N.S.
        • et al.
        Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: a systematic review and meta-analysis of randomised trials.
        Lancet Diabetes Endocrinol. 2021; 9: 653-662
        • Rodbard H.W.
        • Rosenstock J.
        • Canani L.H.
        • Deerochanawong C.
        • Gumprecht J.
        • Lindberg S.Ø.
        • et al.
        Oral Semaglutide Versus Empagliflozin in Patients With Type 2 Diabetes Uncontrolled on Metformin: The PIONEER 2 Trial.
        Diabetes Care. 2019; 42: 2272-2281
        • Zheng S.L.
        • Roddick A.J.
        • Aghar-Jaffar R.
        • Shun-Shin M.J.
        • Francis D.
        • Oliver N.
        • et al.
        Association Between Use of Sodium-Glucose Cotransporter 2 Inhibitors, Glucagon-like Peptide 1 Agonists, and Dipeptidyl Peptidase 4 Inhibitors With All-Cause Mortality in Patients With Type 2 Diabetes.
        JAMA. 2018; 319: 1580https://doi.org/10.1001/jama.2018.3024
        • Palmer S.C.
        • Tendal B.
        • Mustafa R.A.
        • Vandvik P.O.
        • Li S.
        • Hao Q.
        • et al.
        Sodium-glucose cotransporter protein-2 (SGLT-2) inhibitors and glucagon-like peptide-1 (GLP-1) receptor agonists for type 2 diabetes: systematic review and network meta-analysis of randomised controlled trials.
        BMJ. 2021; m4573
        • Yamada T.
        • Wakabayashi M.
        • Bhalla A.
        • Chopra N.
        • Miyashita H.
        • Mikami T.
        • et al.
        Cardiovascular and renal outcomes with SGLT-2 inhibitors versus GLP-1 receptor agonists in patients with type 2 diabetes mellitus and chronic kidney disease: a systematic review and network meta-analysis.
        Cardiovascular Diabetology. 2021; 20https://doi.org/10.1186/s12933-020-01197-z
        • Wei X.-B.
        • Wei W.
        • Ding L.-L.
        • Liu S.-Y.
        Comparison of the effects of 10 GLP-1 RA and SGLT2 inhibitor interventions on cardiovascular, mortality, and kidney outcomes in type 2 diabetes: A network meta-analysis of large randomized trials.
        Prim Care Diabetes. 2021; 15: 208-211
        • Cherney D.Z.I.
        • Perkins B.A.
        • Soleymanlou N.
        • Maione M.
        • Lai V.
        • Lee A.
        • et al.
        Renal Hemodynamic Effect of Sodium-Glucose Cotransporter 2 Inhibition in Patients With Type 1 Diabetes Mellitus.
        Circulation. 2014; 129: 587-597
        • van Raalte D.H.
        • Cherney D.Z.I.
        Sodium glucose cotransporter 2 inhibition and renal ischemia: implications for future clinical trials.
        Kidney Int. 2018; 94: 459-462
        • Carraro-Lacroix L.R.
        • Malnic G.
        • Girardi A.C.C.
        Regulation of Na+/H+exchanger NHE3 by glucagon-like peptide 1 receptor agonist exendin-4 in renal proximal tubule cells.
        Am J Physiol-Renal Physiol. 2009; 297: F1647-F1655
        • Park C.W.
        • Kim H.W.
        • Ko S.H.
        • Lim J.H.
        • Ryu G.R.
        • Chung H.W.
        • et al.
        Long-Term Treatment of Glucagon-Like Peptide-1 Analog Exendin-4 Ameliorates Diabetic Nephropathy through Improving Metabolic Anomalies in db/db Mice.
        J Am Soc Nephrol. 2007; 18: 1227-1238
        • Kodera R.
        • Shikata K.
        • Kataoka H.U.
        • Takatsuka T.
        • Miyamoto S.
        • Sasaki M.
        • et al.
        Glucagon-like peptide-1 receptor agonist ameliorates renal injury through its anti-inflammatory action without lowering blood glucose level in a rat model of type 1 diabetes.
        Diabetologia. 2011; 54: 965-978
        • Heerspink H.J.L.
        • Johnsson E.
        • Gause-Nilsson I.
        • Cain V.A.
        • Sjöström C.D.
        Dapagliflozin reduces albuminuria in patients with diabetes and hypertension receiving renin-angiotensin blockers.
        Diabetes Obes Metab. 2016; 18: 590-597
        • Böhm M.
        • Anker S.D.
        • Butler J.
        • Filippatos G.
        • Ferreira J.P.
        • Pocock S.J.
        • et al.
        Empagliflozin Improves Cardiovascular and Renal Outcomes in Heart Failure Irrespective of Systolic Blood Pressure.
        J Am Coll Cardiol. 2021; 78: 1337-1348
        • Tsapas A.
        • Karagiannis T.
        • Kakotrichi P.
        • Avgerinos I.
        • Mantsiou C.
        • Tousinas G.
        • et al.
        Comparative efficacy of glucose-lowering medications on body weight and blood pressure in patients with type 2 diabetes: A systematic review and network meta-analysis.
        Diabetes Obes Metab. 2021; 23: 2116-2124
        • Lazzaroni E.
        • Ben Nasr M.
        • Loretelli C.
        • Pastore I.
        • Plebani L.
        • Lunati M.E.
        • et al.
        Anti-diabetic drugs and weight loss in patients with type 2 diabetes.
        Pharmacol Res. 2021; 171105782https://doi.org/10.1016/j.phrs.2021.105782
        • Kobayashi K.
        • Toyoda M.
        • Hatori N.
        • Saito N.
        • Kanaoka T.
        • Sakai H.
        • et al.
        Retrospective Analysis of the Renoprotective Effects of Long-Term Use of Six Types of Sodium-Glucose Cotransporter 2 Inhibitors in Japanese Patients with Type 2 Diabetes Mellitus and Chronic Kidney Disease.
        Diabetes Technol Ther. 2021; 23: 110-119
        • Kanda Y.
        Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics.
        Bone Marrow Transplant. 2013; 48: 452-458