Advertisement
Research Article| Volume 182, 109145, December 2021

Outstanding improvement of the advanced lipoprotein profile in subjects with new-onset type 1 diabetes mellitus after achieving optimal glycemic control

  • Author Footnotes
    1 Esmeralda Castelblanco and Marta Hernández contributed equally to this study.
    Esmeralda Castelblanco
    Footnotes
    1 Esmeralda Castelblanco and Marta Hernández contributed equally to this study.
    Affiliations
    Department of Internal Medicine, Endocrinology, Metabolism and Lipid Research Division, Washington University School of Medicine, St Louis, MO 63110, USA

    Unitat de Suport a la Recerca Barcelona, Institut Universitari d’Investigació en Atenció Primària Jordi Gol i Gurina (IDIAP Jordi Gol), 08007 Barcelona, Spain
    Search for articles by this author
  • Author Footnotes
    1 Esmeralda Castelblanco and Marta Hernández contributed equally to this study.
    Marta Hernández
    Footnotes
    1 Esmeralda Castelblanco and Marta Hernández contributed equally to this study.
    Affiliations
    Department of Endocrinology & Nutrition, Hospital Arnau de Vilanova & Institut d'Investigació Biomédica de Lleida (IRB Lleida), 25198 Lleida, Spain
    Search for articles by this author
  • Emilio Ortega
    Affiliations
    Department of Endocrinology & Nutrition, Diabetes Unit, Hospital Clínic de Barcelona, 08036 Barcelona, Spain

    Institut d'investigacions biomèdiques August Pi i Sunyer, 08036 Barcelona, Spain

    Center for Biomedical Research on Pathophysiology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28028 Madrid, Spain
    Search for articles by this author
  • Núria Amigó
    Affiliations
    Biosfer Teslab, SL, Reus, Spain

    Metabolomics Platform, Rovira i Virgili University (URV), Instituto de Investigación Sanitaria Pere Virigili (IISPV), 43007 Tarragona, Spain
    Search for articles by this author
  • Jordi Real
    Affiliations
    Unitat de Suport a la Recerca Barcelona, Institut Universitari d’Investigació en Atenció Primària Jordi Gol i Gurina (IDIAP Jordi Gol), 08007 Barcelona, Spain

    Center for Biomedical Research on Diabetes and Associated Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III (ISCIII), 28022 Madrid, Spain
    Search for articles by this author
  • Minerva Granado-Casas
    Affiliations
    Department of Endocrinology & Nutrition, Hospital Arnau de Vilanova & Institut d'Investigació Biomédica de Lleida (IRB Lleida), 25198 Lleida, Spain

    Center for Biomedical Research on Diabetes and Associated Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III (ISCIII), 28022 Madrid, Spain

    Department of Endocrinology & Nutrition, Hospital de la Santa Creu i Sant Pau & Sant Pau Biomedical Research Institute (IIB Sant Pau), 08041 Barcelona, Spain
    Search for articles by this author
  • Inka Miñambres
    Affiliations
    Center for Biomedical Research on Diabetes and Associated Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III (ISCIII), 28022 Madrid, Spain

    Department of Endocrinology & Nutrition, Hospital de la Santa Creu i Sant Pau & Sant Pau Biomedical Research Institute (IIB Sant Pau), 08041 Barcelona, Spain
    Search for articles by this author
  • Carolina López
    Affiliations
    Department of Endocrinology & Nutrition, Hospital Arnau de Vilanova & Institut d'Investigació Biomédica de Lleida (IRB Lleida), 25198 Lleida, Spain
    Search for articles by this author
  • Albert Lecube
    Affiliations
    Department of Endocrinology & Nutrition, Hospital Arnau de Vilanova & Institut d'Investigació Biomédica de Lleida (IRB Lleida), 25198 Lleida, Spain

    Center for Biomedical Research on Diabetes and Associated Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III (ISCIII), 28022 Madrid, Spain
    Search for articles by this author
  • Marcelino Bermúdez-López
    Affiliations
    Vascular and Renal Translational Research Group, Institute for Biomedical Research Dr. Pifarré Foundation, IRBLleida and RedinRen RETIC, ISCIII, 25198 Lleida, Spain
    Search for articles by this author
  • Núria Alonso
    Affiliations
    Center for Biomedical Research on Diabetes and Associated Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III (ISCIII), 28022 Madrid, Spain

    Department of Medicine, Autonomous University of Barcelona, Barcelona, Spain

    Department of Endocrinology & Nutrition, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain
    Search for articles by this author
  • Josep Julve
    Correspondence
    Corresponding authors at: Department of Endocrinology & Nutrition, Hospital de la Santa Creu i Sant Pau, Sant Quintí, 89, 08041 Barcelona, Spain (D. Mauricio). Sant Pau Biomedical Research Institute, Sant Quintí, 77-79, 08041 Barcelona, Spain. (J. Julve).
    Affiliations
    Center for Biomedical Research on Diabetes and Associated Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III (ISCIII), 28022 Madrid, Spain

    Sant Pau Biomedical Research Institute (IIB Sant Pau), 08041 Barcelona, Spain
    Search for articles by this author
  • Didac Mauricio
    Correspondence
    Corresponding authors at: Department of Endocrinology & Nutrition, Hospital de la Santa Creu i Sant Pau, Sant Quintí, 89, 08041 Barcelona, Spain (D. Mauricio). Sant Pau Biomedical Research Institute, Sant Quintí, 77-79, 08041 Barcelona, Spain. (J. Julve).
    Affiliations
    Unitat de Suport a la Recerca Barcelona, Institut Universitari d’Investigació en Atenció Primària Jordi Gol i Gurina (IDIAP Jordi Gol), 08007 Barcelona, Spain

    Center for Biomedical Research on Diabetes and Associated Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III (ISCIII), 28022 Madrid, Spain

    Department of Endocrinology & Nutrition, Hospital de la Santa Creu i Sant Pau & Sant Pau Biomedical Research Institute (IIB Sant Pau), 08041 Barcelona, Spain

    Faculty of Medicine, University of Vic (UVIC/UCC), 08500 Vic, Spain
    Search for articles by this author
  • Author Footnotes
    1 Esmeralda Castelblanco and Marta Hernández contributed equally to this study.
Published:November 12, 2021DOI:https://doi.org/10.1016/j.diabres.2021.109145

      Abstract

      Aims

      The impact of glycemic optimization on lipoprotein subfraction parameters in apparently normolipidemic subjects with new-onset type 1 diabetes mellitus (T1D) was examined.

      Methods

      We evaluated the serum lipid and advanced lipoprotein profiles in twenty subjects at onset of T1D and twenty non-diabetic controls by laboratory methods and 1H NMR spectroscopy shortly after diabetes diagnosis (baseline), and after achieving optimal glycemic control (HbA1c ≤ 7.0%).

      Results

      Advanced lipoprotein analysis revealed a significant reduction from baseline in serum concentrations of triglycerides (TG), cholesterol (C), and apolipoprotein (Apo)B-containing lipoproteins of treated subjects (VLDL-TG: −21%, IDL-TG: −30%, LDL-TG: −34%, LDL-TG: −36%, P < 0.05; VLDL-C: –23%, IDL-C: −44%, LDL-C: −16%; p < 0.05). Decreased VLDL and LDL lipids were mainly attributed to concomitant reductions in the concentration of medium-sized VLDL (–36%) and medium-sized LDL (–31%) and, to a lesser extent, to large-sized LDL (–14%). Notably, proatherogenic IDL characteristics and related surrogates of atherogenicity were resolved upon achievement of optimal glycemic status. Moreover, the concentration of HDL-TG was also reduced (−18%) at follow-up.

      Conclusions

      Our data showed that the achievement of optimal glycemic control after T1D onset corrected hidden derangements in ApoB-containing lipoproteins (particularly IDL) and HDL-TG that are related to higher cardiovascular risk in poorly controlled T1D.

      Keywords

      Abbreviations:

      ApoB (apolipoprotein B), ApoA-I (apolipoprotein A-I), Lp(a) (Lipoprotein (a)), 1H NMR (nuclear magnetic resonance), CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration), CVD (cardiovascular disease), IDL (intermediate-density lipoprotein), LDL-C (low-density lipoprotein cholesterol), HDL-C (high-density lipoprotein cholesterol), NEFA (non-esterified fatty acids), T1D (type 1 diabetes mellitus), TG (triglycerides), VLDL (very-low-density lipoprotein)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Diabetes Research and Clinical Practice
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Vergès B.
        Dyslipidemia in Type 1 Diabetes: AMaskedDanger.
        Trends Endocrinol Metab. 2020; 31: 422-434
        • Amor A.J.
        • Vinagre I.
        • Valverde M.
        • Urquizu X.
        • Meler E.
        • López E.
        • et al.
        Nuclear magnetic resonance-based metabolomic analysis in the assessment of preclinical atherosclerosis in type 1 diabetes and preeclampsia.
        Diabetes Res Clin Pract. 2021; 171: 108548https://doi.org/10.1016/j.diabres.2020.108548
        • Schofield J.
        • Ho J.
        • Soran H.
        Cardiovascular Risk in Type 1 Diabetes Mellitus.
        Diabetes Ther. 2019; 10: 773-789
        • Nathan D.M.
        • Cleary P.A.
        • Backlund J.Y.
        • Genuth S.M.
        • Lachin J.M.
        • Orchard T.J.
        • et al.
        Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes.
        N Engl J Med. 2005; 353: 2643-2653
        • Teleb M.
        • Popp Switzer M.
        • Elhanafi S.
        • Elfar A.
        • San Juan Z.T.
        Glycemic Control and Excess Cardiovascular Mortality in Type 1 Diabetes.
        Curr Cardiol Rep. 2016; 18: 29
        • Ray K.K.
        • Seshasai S.R.K.
        • Wijesuriya S.
        • Sivakumaran R.
        • Nethercott S.
        • Preiss D.
        • et al.
        Effect of intensive control of glucose on cardiovascular outcomes and death in patients with diabetes mellitus: a meta-analysis of randomised controlled trials.
        Lancet. 2009; 373: 1765-1772
        • Bebu I.
        • Braffett B.H.
        • Pop-Busui R.
        • Orchard T.J.
        • Nathan D.M.
        • Lachin J.M.
        The relationship of blood glucose with cardiovascular disease is mediated over time by traditional risk factors in type 1 diabetes: the DCCT/EDIC study.
        Diabetologia. 2017; 60: 2084-2091
        • Chung W.K.
        • Erion K.
        • Florez J.C.
        • Hattersley A.T.
        • Hivert M.-F.
        • Lee C.G.
        • et al.
        Precision Medicine in Diabetes: A Consensus Report From the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD).
        Diabetes Care. 2020; 43: 1617-1635
        • Brugnara L.
        • Mallol R.
        • Ribalta J.
        • Vinaixa M.
        • Murillo S.
        • Casserras T.
        • et al.
        Improving Assessment of Lipoprotein Profile in Type 1 Diabetes by 1H NMR Spectroscopy.
        PLoS ONE. 2015; 10: e0136348https://doi.org/10.1371/journal.pone.0136348
        • Varbo A.
        • Nordestgaard B.G.
        Directly measured vs. calculated remnant cholesterol identifies additional overlooked individuals in the general population at higher risk of myocardial infarction.
        Eur Heart J. 2021; https://doi.org/10.1093/eurheartj/ehab293
        • Laffel L.
        Ketone bodies: a review of physiology, pathophysiology and application of monitoring to diabetes.
        Diabetes Metab Res Rev. 1999; 15: 412-426
        • Levey A.S.
        • Stevens L.A.
        • Schmid C.H.
        • Zhang Y.(.
        • Castro A.F.
        • Feldman H.I.
        • et al.
        A new equation to estimate glomerular filtration rate.
        Ann Intern Med. 2009; 150: 604-612https://doi.org/10.7326/0003-4819-150-9-200905050-00006
        • Bedogni G.
        • Bellentani S.
        • Miglioli L.
        • Masutti F.
        • Passalacqua M.
        • Castiglione A.
        • et al.
        The Fatty Liver Index: a simple and accurate predictor of hepatic steatosis in the general population.
        BMC Gastroenterol. 2006; 6https://doi.org/10.1186/1471-230X-6-33
        • Mallol R.
        • Amigó N.
        • Rodríguez M.A.
        • Heras M.
        • Vinaixa M.
        • Plana N.
        • et al.
        Liposcale: a novel advanced lipoprotein test based on 2D diffusion-ordered 1H NMR spectroscopy.
        J Lipid Res. 2015; 56: 737-746
        • Mallol R.
        • Rodríguez M.A.
        • Heras M.
        • Vinaixa M.
        • Plana N.
        • Masana L.
        • et al.
        Particle size measurement of lipoprotein fractions using diffusion-ordered NMR spectroscopy.
        Anal Bioanal Chem. 2012; 402: 2407-2415
        • Llauradó G.
        • Amigó N.
        • Cano A.
        • Ballesta S.
        • Albert L.
        • Mazarico I.
        • et al.
        Specific Nuclear Magnetic Resonance Lipoprotein Subclass Profiles and Central Arterial Stiffness in Type 1 Diabetes Mellitus: A Case Control Study.
        J Clin Med. 2019; 8: 1875https://doi.org/10.3390/jcm8111875
        • The DCCT Research Group
        Lipid and lipoprotein levels in patients with IDDM diabetes control and complication. Trial experience.
        Diabetes Care. 1992; 15: 886-894
        • Ostlund R.E.
        • Semenkovich C.F.
        • Schechtman K.B.
        Quantitative relationship between plasma lipids and glycohemoglobin in type I patients. Longitudinal study of 212 patients.
        Diabetes Care. 1989; 12: 332-336
        • Taskinen M.-R.
        Quantitative and qualitative lipoprotein abnormalities in diabetes mellitus.
        Diabetes. 1992; 41: 12-17
        • Amor A.J.
        • Castelblanco E.
        • Hernández M.
        • Gimenez M.
        • Granado-Casas M.
        • Blanco J.
        • et al.
        Advanced lipoprotein profile disturbances in type 1 diabetes mellitus: a focus on LDL particles.
        Cardiovasc Diabetol. 2020; 19: 126https://doi.org/10.1186/s12933-020-01099-0
        • Bagdade J.D.
        • Dunn F.L.
        • Eckel R.H.
        • Ritter M.C.
        Intraperitoneal insulin therapy corrects abnormalities in cholesteryl ester transfer and lipoprotein lipase activities in insulin-dependent diabetes mellitus.
        Arterioscler Thromb. 1994; 14: 1933-1939
        • Malmstrom R.
        • Packard C.J.
        • Caslake M.
        • Bedford D.
        • Stewart P.
        • Yki-Jarvinen H.
        • et al.
        Effects of insulin and acipimox on VLDL1 and VLDL2 apolipoprotein B production in normal subjects.
        Diabetes. 1998; 47: 779-787
        • Colhoun H.M.
        • Otvos J.D.
        • Rubens M.B.
        • Taskinen M.R.
        • Underwood S.R.
        • Fuller J.H.
        Lipoprotein subclasses and particle sizes and their relationship with coronary artery calcification in men and women with and without type 1 diabetes.
        Diabetes. 2002; 51: 1949-1956
        • Talayero B.G.
        • Sacks F.M.
        The role of triglycerides in atherosclerosis.
        Curr Cardiol Rep. 2011; 13: 544-552
        • Winocour P.H.
        • Durrington P.N.
        • Bhatnagar D.
        • Ishola M.
        • Mackness M.
        • Arrol S.
        Influence of early diabetic nephropathy on very low density lipoprotein (VLDL), intermediate density lipoprotein (IDL), and low density lipoprotein (LDL) composition.
        Atherosclerosis. 1991; 89: 49-57
        • Shoji T.
        • Nishizawa Y.
        • Kawagishi T.
        • Kawasaki K.
        • Taniwaki H.
        • Tabata T.
        • et al.
        Intermediate-density lipoprotein as an independent risk factor for aortic atherosclerosis in hemodialysis patients.
        J Am Soc Nephrol. 1998; 9: 1277-1284
        • Pichler G.
        • Amigo N.
        • Tellez-Plaza M.
        • Pardo-Cea M.A.
        • Dominguez-Lucas A.
        • Marrachelli V.G.
        • et al.
        LDL particle size and composition and incident cardiovascular disease in a South-European population: The Hortega-Liposcale Follow-up Study.
        Int J Cardiol. 2018; 264: 172-178
        • Emmison N.
        • Zammit V.A.
        • Agius L.
        Triacylglycerol accumulation and secretion in hepatocyte cultures. Effects of insulin, albumin and Triton WR 1339.
        Biochem J. 1992; 285: 655-660
        • Yoon TH
        • Yamada N
        • Ishibashi S
        • Shimano H
        • Gotoda T
        • Harada K
        • et al.
        The release of hepatic triglyceride lipase from rat monolayered hepatocytes in primary culture.
        Endocrinol Jpn. 1990; 37: 437-442
        • Nakai T.
        • Yamada S.
        • Tamai T.
        • Kobayashi T.
        • Hayashi T.
        • Takeda R.
        The effects of streptozotocin diabetes on hepatic triglyceride lipase activity in the rat.
        Metabolism. 1979; 28: 30-40
        • Elkeles R.S.
        • Hambley J.
        The effects of fasting and streptozotocin diabetes on hepatic triglyceride lipase activity in the rat.
        Diabetes. 1977; 26: 58-60
        • Ruotolo G.
        • Parlavecchia M.
        • Taskinen M.-R.
        • Galimberti G.
        • Zoppo A.
        • Le N.-A.
        • et al.
        Normalization of lipoprotein composition by intraperitoneal insulin in IDDM. Role of increased hepatic lipase activity.
        Diabetes Care. 1994; 17: 6-12
        • Colhoun H.M.
        • Taskinen M.-R.
        • Otvos J.D.
        • van den Berg P.
        • O'Connor J.
        • Van Tol A.
        Relationship of phospholipid transfer protein activity to HDL and apolipoprotein B-containing lipoproteins in subjects with and without type 1 diabetes.
        Diabetes. 2002; 51: 3300-3305
        • Colhoun H.M.
        • Scheek L.M.
        • Rubens M.B.
        • Van Gent T.
        • Underwood S.R.
        • Fuller J.H.
        • et al.
        Lipid transfer protein activities in type 1 diabetic patients without renal failure and nondiabetic control subjects and their association with coronary artery calcification.
        Diabetes. 2001; 50: 652-659
        • Rye K.-A.
        • Jauhiainen M.
        • Barter P.J.
        • Ehnholm C.
        Triglyceride-enrichment of high density lipoproteins enhances their remodelling by phospholipid transfer protein.
        J Lipid Res. 1998; 39: 613-622
        • Abbasi A.
        • Dallinga-Thie G.M.
        • Dullaart R.P.F.
        Phospholipid transfer protein activity and incident type 2 diabetes mellitus.
        Clin Chim Acta. 2015; 439: 38-41
        • Dullaart RP
        • Vergeer M
        • de Vries R
        • Kappelle PJ
        • Dallinga-Thie GM
        Type 2 diabetes mellitus interacts with obesity and common variations in PLTP to affect plasma phospholipid transfer protein activity.
        J Intern Med. 2012; 271: 490-498
        • de Vries R.
        • Kappelle P.J.W.H.
        • Dallinga-Thie G.M.
        • Dullaart R.P.F.
        Plasma phospholipid transfer protein activity is independently determined by obesity and insulin resistance in non-diabetic subjects.
        Atherosclerosis. 2011; 217: 253-259
        • Riemens S.C.
        • van Tol A.
        • Sluiter W.J.
        • Dullaart R.P.
        Plasma phospholipid transfer protein activity is lowered by 24-h insulin and acipimox administration: blunted response to insulin in type 2 diabetic patients.
        Diabetes. 1999; 48: 1631-1637