Associated autoimmunity in Type 1 Diabetes and latent autoimmune diabetes of adults: The role of glutamic-acid decarboxylase autoantibodies

      Abstract

      Aims

      To determine the prevalence of Associated Autoimmune Diseases (AADs) in Latent Autoimmune Diabetes of Adults (LADA) versus autoimmune Type 1 Diabetes (T1D) and the role of glutamic-acid decarboxylase antibodies (GADA) and other factors.

      Methods

      Adults with autoimmune diabetes mellitus (DM) were recruited from the Diabetes Center of Nikaia-Piraeus Hospital. Demographic and clinical parameters were recorded and anti-pancreatic and organ-specific antibodies were measured.

      Results

      Of 160 patients, 33.75% had one AAD and 24.37% had two or more. Patients with LADA had higher overall prevalence of AADs, mainly autoimmune thyroiditis and gastritis. Celiac disease was present only in T1D. GADA positive patients had higher prevalence of AADs and multiple autoimmunity, especially thyroiditis and gastritis. Patients with LADA had higher rates of positive GADA or islet-cell antibodies (ICA). After controlling for LADA, GADA remained a significant predictor of AADs. Female gender and chronological age were also significant predictors of AADs.

      Conclusions

      AADs were present in 58.13% of patients. Patients with LADA were more prone to a generalized autoimmune disorder than those with T1D. AADs development was significantly associated with female sex, older age and positive GADA, which proved an independent marker of associated autoimmunity.

      Keywords

      To read this article in full you will need to make a payment

      References

      1. Standards of Medical Care in Diabetes—2014. 2014;37:S14-S80 DOI: 10.2337/dc14-S014 %J Diabetes Care.

      2. Diagnosis and Classification of Diabetes Mellitus. 2009;32:S62-S7 DOI: 10.2337/dc09-S062 %J Diabetes Care.

        • Rewers M.
        • Ludvigsson J.
        Environmental risk factors for type 1 diabetes.
        Lancet (London, England). 2016; 387: 2340-2348https://doi.org/10.1016/s0140-6736(16)30507-4
        • Oram R.A.
        • Patel K.
        • Hill A.
        • Shields B.
        • McDonald T.J.
        • Jones A.
        • et al.
        A Type 1 Diabetes Genetic Risk Score Can Aid Discrimination Between Type 1 and Type 2 Diabetes in Young Adults.
        Diabetes Care. 2016; 39: 337-344https://doi.org/10.2337/dc15-1111
        • Thomas N.J.
        • Jones S.E.
        • Weedon M.N.
        • Shields B.M.
        • Oram R.A.
        • Hattersley A.T.
        Frequency and phenotype of type 1 diabetes in the first six decades of life: a cross-sectional, genetically stratified survival analysis from UK Biobank.
        The lancet Diabetes & endocrinology. 2018; 6: 122-129https://doi.org/10.1016/s2213-8587(17)30362-5
        • Buzzetti R.
        • Zampetti S.
        • Maddaloni E.
        Adult-onset autoimmune diabetes: current knowledge and implications for management.
        Nature reviews Endocrinology. 2017; 13: 674-686https://doi.org/10.1038/nrendo.2017.99
        • Zhang M.
        • Lin S.
        • Yuan X.
        • Lin Z.
        • Huang Z.
        HLA-DQB1 and HLA-DRB1 Variants Confer Susceptibility to Latent Autoimmune Diabetes in Adults: Relative Predispositional Effects among Allele Groups.
        Genes (Basel). 2019; 10: 710https://doi.org/10.3390/genes10090710
        • Carlsson S.
        Etiology and Pathogenesis of Latent Autoimmune Diabetes in Adults (LADA) Compared to Type 2 Diabetes.
        Front Physiol. 2019;10:320-; https://doi.org/10.3389/fphys.2019.00320
        • Mishra R.
        • Chesi A.
        • Cousminer D.L.
        • Hawa M.I.
        • Bradfield J.P.
        • Hodge K.M.
        • et al.
        Relative contribution of type 1 and type 2 diabetes loci to the genetic etiology of adult-onset, non-insulin-requiring autoimmune diabetes.
        BMC Med. 2017;15:88-; https://doi.org/10.1186/s12916-017-0846-0
        • Zampetti S.
        • Spoletini M.
        • Petrone A.
        • Capizzi M.
        • Arpi M.L.
        • Tiberti C.
        • et al.
        Association of TCF7L2 gene variants with low GAD autoantibody titre in LADA subjects (NIRAD Study 5).
        Diabet Med. 2010; 27: 701-704https://doi.org/10.1111/j.1464-5491.2010.02997.x
        • Hayter S.M.
        • Cook M.C.
        Updated assessment of the prevalence, spectrum and case definition of autoimmune disease.
        Autoimmun Rev. 2012; 11: 754-765https://doi.org/10.1016/j.autrev.2012.02.001
        • Kakleas K.
        • Soldatou A.
        • Karachaliou F.
        • Karavanaki K.
        Associated autoimmune diseases in children and adolescents with type 1 diabetes mellitus (T1DM).
        Autoimmun Rev. 2015; 14: 781-797https://doi.org/10.1016/j.autrev.2015.05.002
        • Hughes J.W.
        • Riddlesworth T.D.
        • DiMeglio L.A.
        • Miller K.M.
        • Rickels M.R.
        • McGill J.B.
        • et al.
        Autoimmune Diseases in Children and Adults With Type 1 Diabetes From the T1D Exchange Clinic Registry.
        The Journal of Clinical Endocrinology & Metabolism. 2016; 101: 4931-4937https://doi.org/10.1210/jc.2016-2478 %J The Journal of Clinical Endocrinology & Metabolism
      3. Hughes JW, Bao YK, Salam M, Joshi P, Kilpatrick CR, Juneja K, et al. Late-Onset T1DM and Older Age Predict Risk of Additional Autoimmune Disease. 2019;42:32-8 DOI: 10.2337/dc18-1157 %J Diabetes Care.

      4. Kozhakhmetova A, Wyatt RC, Caygill C, Williams C, Long AE, Chandler K, et al. A quarter of patients with type 1 diabetes have co-existing non-islet autoimmunity: the findings of a UK population-based family study. 2018;192:251-8 DOI: 10.1111/cei.13115.

        • Bao Y.K.
        • Weide L.G.
        • Ganesan V.C.
        • Jakhar I.
        • McGill J.B.
        • Sahil S.
        • et al.
        High prevalence of comorbid autoimmune diseases in adults with type 1 diabetes from the HealthFacts database.
        J Diabetes. 2018; 11: 273-279
        • Tait K.F.
        • Marshall T.
        • Berman J.
        • Carr-Smith J.
        • Rowe B.
        • Todd J.A.
        • et al.
        Clustering of autoimmune disease in parents of siblings from the Type 1 diabetes Warren repository.
        Diabet Med. 2004; 21: 358-362https://doi.org/10.1111/j.1464-5491.2004.01162.x
        • Brorsson C.A.
        • Pociot F.
        Shared Genetic Basis for Type 1 Diabetes, Islet Autoantibodies, and Autoantibodies Associated With Other Immune-Mediated Diseases in Families With Type 1 Diabetes.
        Diabetes Care. 2015; 38: S8-S13https://doi.org/10.2337/dcs15-2003
        • Tobón G.J.
        • Pers J.O.
        • Cañas C.A.
        • Rojas-Villarraga A.
        • Youinou P.
        • Anaya J.M.
        Are autoimmune diseases predictable?.
        Autoimmun Rev. 2012; 11: 259-266https://doi.org/10.1016/j.autrev.2011.10.004
        • Missoum H.
        • Alami M.
        • Bachir F.
        • Arji N.
        • Bouyahya A.
        • Rhajaoui M.
        • et al.
        Prevalence of autoimmune diseases and clinical significance of autoantibody profile: Data from National Institute of Hygiene in Rabat.
        Morocco. Human immunology. 2019; 80: 523-532https://doi.org/10.1016/j.humimm.2019.02.012
        • Fourlanos S.
        • Dotta F.
        • Greenbaum C.J.
        • Palmer J.P.
        • Rolandsson O.
        • Colman P.G.
        • et al.
        Latent autoimmune diabetes in adults (LADA) should be less latent.
        Diabetologia. 2005; 48: 2206-2212https://doi.org/10.1007/s00125-005-1960-7
        • De Block C.E.
        • De Leeuw I.H.
        • Van Gaal L.F.
        High prevalence of manifestations of gastric autoimmunity in parietal cell antibody-positive type 1 (insulin-dependent) diabetic patients.
        The Belgian Diabetes Registry. The Journal of clinical endocrinology and metabolism. 1999; 84: 4062-4067https://doi.org/10.1210/jcem.84.11.6095
        • Triolo T.M.
        • Armstrong T.K.
        • McFann K.
        • Yu L.
        • Rewers M.J.
        • Klingensmith G.J.
        • et al.
        Additional autoimmune disease found in 33% of patients at type 1 diabetes onset.
        Diabetes Care. 2011; 34: 1211-1213https://doi.org/10.2337/dc10-1756
        • Bakker S.F.
        • Tushuizen M.E.
        • von Blomberg M.E.
        • Mulder C.J.
        • Simsek S.
        Type 1 diabetes and celiac disease in adults: glycemic control and diabetic complications.
        Acta Diabetol. 2013; 50: 319-324https://doi.org/10.1007/s00592-012-0395-0
        • Vilppula A.
        • Collin P.
        • Mäki M.
        • Valve R.
        • Luostarinen M.
        • Krekelä I.
        • et al.
        Undetected coeliac disease in the elderly: a biopsy-proven population-based study.
        Digestive and liver disease : official journal of the Italian Society of Gastroenterology and the Italian Association for the Study of the Liver. 2008; 40: 809-813https://doi.org/10.1016/j.dld.2008.03.013
        • Kucera P.
        • Nováková D.
        • Behanová M.
        • Novak J.
        • Tlaskalová-Hogenová H.
        • Andel M.
        Gliadin, endomysial and thyroid antibodies in patients with latent autoimmune diabetes of adults (LADA).
        Clin Exp Immunol. 2003; 133: 139-143https://doi.org/10.1046/j.1365-2249.2003.02205.x
        • De Block C.E.
        • De Leeuw I.H.
        • Rooman R.P.
        • Winnock F.
        • Du Caju M.V.
        • Van Gaal L.F.
        Gastric parietal cell antibodies are associated with glutamic acid decarboxylase-65 antibodies and the HLA DQA1*0501-DQB1*0301 haplotype in Type 1 diabetes mellitus.
        Belgian Diabetes Registry. Diabet Med. 2000; 17: 618-622https://doi.org/10.1046/j.1464-5491.2000.00354.x
        • De Block C.E.
        • De Leeuw I.H.
        • Vertommen J.J.
        • Rooman R.P.
        • Du Caju M.V.
        • Van Campenhout C.M.
        • et al.
        Beta-cell, thyroid, gastric, adrenal and coeliac autoimmunity and HLA-DQ types in type 1 diabetes.
        Clin Exp Immunol. 2001; 126: 236-241https://doi.org/10.1046/j.1365-2249.2001.01668.x
        • Triolo T.M.
        • Baschal E.E.
        • Armstrong T.K.
        • Toews C.S.
        • Fain P.R.
        • Rewers M.J.
        • et al.
        Homozygosity of the polymorphism MICA5.1 identifies extreme risk of progression to overt adrenal insufficiency among 21-hydroxylase antibody-positive patients with type 1 diabetes.
        The Journal of clinical endocrinology and metabolism. 2009; 94: 4517-4523https://doi.org/10.1210/jc.2009-1308
        • Barker J.M.
        • Yu J.
        • Yu L.
        • Wang J.
        • Miao D.
        • Bao F.
        • et al.
        Autoantibody “subspecificity” in type 1 diabetes: risk for organ-specific autoimmunity clusters in distinct groups.
        Diabetes Care. 2005; 28: 850-855https://doi.org/10.2337/diacare.28.4.850
        • Zampetti S.
        • Campagna G.
        • Tiberti C.
        • Songini M.
        • Arpi M.L.
        • De Simone G.
        • et al.
        High GADA titer increases the risk of insulin requirement in LADA patients: a 7-year follow-up (NIRAD study 7).
        Eur J Endocrinol. 2014; 171: 697-704https://doi.org/10.1530/eje-14-0342
      5. Radtke MA, Midthjell K, Nilsen TIL, Grill V. Heterogeneity of Patients With Latent Autoimmune Diabetes in Adults: Linkage to Autoimmunity Is Apparent Only in Those With Perceived Need for Insulin Treatment. Results from the Nord-Trøndelag Health (HUNT) study. 2009;32:245-50 DOI: 10.2337/dc08-1468 %J Diabetes Care.

        • Kakleas K.
        • Kostaki M.
        • Critselis E.
        • Karayianni C.
        • Giannaki M.
        • Anyfantakis K.
        • et al.
        Gastric autoimmunity in children and adolescents with type 1 diabetes: a prospective study.
        Hormone research in paediatrics. 2012; 77: 121-126https://doi.org/10.1159/000336923
        • Riley W.J.
        • Winer A.
        • Goldstein D.
        Coincident presence of thyro-gastric autoimmunity at onset of type 1 (insulin-dependent) diabetes.
        Diabetologia. 1983; 24: 418-421https://doi.org/10.1007/bf00257339
        • Sørgjerd E.P.
        • Skorpen F.
        • Kvaløy K.
        • Midthjell K.
        • Grill V.
        Time dynamics of autoantibodies are coupled to phenotypes and add to the heterogeneity of autoimmune diabetes in adults: the HUNT study.
        Norway. Diabetologia. 2012; 55: 1310-1318https://doi.org/10.1007/s00125-012-2463-y
        • Hawa M.I.
        • Kolb H.
        • Schloot N.
        • Beyan H.
        • Paschou S.A.
        • Buzzetti R.
        • et al.
        Adult-onset autoimmune diabetes in Europe is prevalent with a broad clinical phenotype: Action LADA 7.
        Diabetes Care. 2013; 36: 908-913https://doi.org/10.2337/dc12-0931
        • Regnell S.E.
        • Lernmark Å.
        Early prediction of autoimmune (type 1) diabetes.
        Diabetologia. 2017; 60: 1370-1381https://doi.org/10.1007/s00125-017-4308-1
        • Vehik K.
        • Lynch K.F.
        • Schatz D.A.
        • Akolkar B.
        • Hagopian W.
        • Rewers M.
        • et al.
        Reversion of β-Cell Autoimmunity Changes Risk of Type 1 Diabetes: TEDDY Study.
        Diabetes Care. 2016; 39: 1535-1542https://doi.org/10.2337/dc16-0181
        • Karavanaki K.
        • Kakleas K.
        • Paschali E.
        • Kefalas N.
        • Konstantopoulos I.
        • Petrou V.
        • et al.
        Screening for associated autoimmunity in children and adolescents with type 1 diabetes mellitus (T1DM).
        Horm Res. 2009; 71: 201-206https://doi.org/10.1159/000201108
        • Desai M.
        • Cull C.A.
        • Horton V.A.
        • Christie M.R.
        • Bonifacio E.
        • Lampasona V.
        • et al.
        GAD autoantibodies and epitope reactivities persist after diagnosis in latent autoimmune diabetes in adults but do not predict disease progression: UKPDS 77.
        Diabetologia. 2007; 50: 2052-2060https://doi.org/10.1007/s00125-007-0745-6
        • Pettersen E.
        • Skorpen F.
        • Kvaløy K.
        • Midthjell K.
        • Grill V.
        Genetic heterogeneity in latent autoimmune diabetes is linked to various degrees of autoimmune activity: results from the Nord-Trøndelag Health Study.
        Diabetes. 2010; 59: 302-310https://doi.org/10.2337/db09-0923
        • Turner R.
        • Stratton I.
        • Horton V.
        • Manley S.
        • Zimmet P.
        • Mackay I.R.
        • et al.
        UKPDS 25: autoantibodies to islet-cell cytoplasm and glutamic acid decarboxylase for prediction of insulin requirement in type 2 diabetes.
        UK Prospective Diabetes Study Group. Lancet (London, England). 1997; 350: 1288-1293https://doi.org/10.1016/s0140-6736(97)03062-6
        • Bárová H.
        • Perusicová J.
        • Hill M.
        • Sterzl I.
        • Vondra K.
        • Masek Z.
        Anti-GAD-positive patients with type 1 diabetes mellitus have higher prevalence of autoimmune thyroiditis than anti-GAD-negative patients with type 1 and type 2 diabetes mellitus.
        Physiol Res. 2004; 53: 279-286
        • Zampetti S.
        • Capizzi M.
        • Spoletini M.
        • Campagna G.
        • Leto G.
        • Cipolloni L.
        • et al.
        GADA titer-related risk for organ-specific autoimmunity in LADA subjects subdivided according to gender (NIRAD study 6).
        The Journal of clinical endocrinology and metabolism. 2012; 97: 3759-3765https://doi.org/10.1210/jc.2012-2037
        • Talal N.
        Autoimmunity and the immunologic network. 1978; 21: 853-861https://doi.org/10.1002/art.1780210719
        • Dozmorov M.G.
        • Coit P.
        • Maksimowicz-McKinnon K.
        • Sawalha A.H.
        Age-associated DNA methylation changes in naive CD4(+) T cells suggest an evolving autoimmune epigenotype in aging T cells.
        Epigenomics. 2017; 9: 429-445https://doi.org/10.2217/epi-2016-0143
        • Vadasz Z.
        • Haj T.
        • Kessel A.
        • Toubi E.
        Age-related autoimmunity.
        BMC Med. 2013; 11: 94https://doi.org/10.1186/1741-7015-11-94