Advertisement
Review| Volume 170, 108462, December 2020

Download started.

Ok

The nephrological perspective on SGLT-2 inhibitors in type 1 diabetes

  • Pieter Gillard
    Affiliations
    Department of Endocrinology, University Hospitals Leuven, KU Leuven, Belgium
    Search for articles by this author
  • Oliver Schnell
    Correspondence
    Corresponding author at: Sciarc GmbH, Baierbrunn, Germany.
    Affiliations
    Sciarc GmbH, Baierbrunn, Germany

    Forschergruppe Diabetes e.V., München - Neuherberg, Germany
    Search for articles by this author
  • Per-Henrik Groop
    Affiliations
    Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland

    Abdominal Centre, Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland

    Research Program for Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland

    Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
    Search for articles by this author
Published:September 21, 2020DOI:https://doi.org/10.1016/j.diabres.2020.108462

      Abstract

      Prevalence of type 1 diabetes mellitus (T1DM) is globally continuously increasing. T1DM is accompanied by a high risk of developing cardiovascular and renal comorbidities and is one of the leading causes of end-stage renal disease (ESRD).
      However, current therapeutic approaches for chronic and/or diabetic kidney disease (CKD/DKD) existed for a long time, and offer room for improvement, particularly in T1DM. In 2019, the European Medicines Agency (EMA) approved a first sodium/glucose co-transporter 2 inhibitor (SGLT-2i) and a first dual SGLT-1/-2i to improve glycaemic control, as an adjunctive treatment to insulin in persons with T1DM and a body mass index ≥27 kg/m2. Of note, SGLT-1/2is and SGLT-2is are not approved by the Food and Drug Administration (FDA) as an adjunct treatment in T1DM, nor approved for the treatment of CKD or DKD by EMA and FDA.
      SGLT is have shown to mediate different renoprotective effects in type 2 diabetes mellitus in corresponding cardiovascular and renal outcome trials. First efficacy trials offer insights into potential positive effects on renal function and kidney disease of SGLTis in T1DM. This review summarizes and discusses latest available data on SGLT inhibition and provides an update on the nephrological perspective on SGLTis, specifically in T1DM.

      Keywords

      Abbreviations:

      ACE-2 (angiotensin-converting-enzyme-2), ACEi (angiotensin-converting-enzyme inhibitor), AGEs (advanced glycosylation end-products), ARBs (angiotensin receptor blockers), BMI (body mass index), BP (blood pressure), Cana100/300 (canagliflozin 100mg / 300mg), CI (confidence interval), CKD (chronic kidney disease), CV (cardiovascular), CVD (cardiovascular disease), CVOTs (cardiovascular outcome trials), Dapa5/10 (dapagliflozin 5mg / 10mg), DBP (diastolic blood pressure), DEPICT (Dapagliflozin Evaluation in Patients with Inadequately Controlled Type 1 Diabetes), DKA (diabetic ketoacidosis), DKD (diabetic kidney disease), DM (diabetes mellitus), DPV (German Diabetes Prospective Follow-up Registry), EASE (Empagliflozin as Adjunctive to inSulin thErapy, EASE-program), eGFR (estimated glomerular filtration rate), EMA (European Medicines Agency), Empa10/25 (empagliflozin 10mg / 25mg), ESRD (end-stage renal disease), FDA (U.S. Food and Drug Administration), FGF-21 (fibroblast growth factor 21), GBM (glomerular basement membrane), HbA1c (glycated haemoglobin A1c), HR (hazard ratio), IR (insulin resistance), IU (international unit), LSM (least square matching), NaCl (sodium chloride), NALFD (non-alcoholic fatty liver disease), ND-CKD (non-diabetic chronic kidney disease), Nrf2 (nuclear factor erythroid 2-related factor 2), RAGE (receptor for advanced glycosylation end-products), RAS (renin-angiotensin-system), RCT (randomized controlled trial), ROS (reactive oxygen species), SBP (systolic blood pressure), SE (standard error), SGLT-1/-2is (dual sodium/glucose co-transporter 1 and 2 inhibitors), SGLT-2 (sodium/glucose co-transporter 2), SGLT-2is (sodium/glucose co-transporter 2 inhibitors), SGLTs (sodium/glucose co-transporters), Sota400 (sotagliflozin 400mg), STAT1 (signal transducer and activator of transcription 1), T1DM (type 1 diabetes mellitus), T1DX (U.S. Type 1 Diabetes Exchange Registry), T2DM (type 2 diabetes mellitus), TF (tubuloglomerular feedback), TGF-beta (transforming growth factor beta 1), TIR (time in range), UACR (urinary albumin-to-creatinine ratio), WHO (world health organization)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Diabetes Research and Clinical Practice
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

      1. International Diabetes Federation. IDF Diabetes Atlas, 9th ed. In. Brussels, Belgium; 2019.

        • Perkovic V.
        • Jardine M.J.
        • Neal B.
        • et al.
        Canagliflozin and renal outcomes in type 2 diabetes and nephropathy.
        N Engl J Med. 2019; 380: 2295-2306
        • Wiviott S.D.
        • Raz I.
        • Bonaca M.P.
        • et al.
        Dapagliflozin and cardiovascular outcomes in type 2 diabetes.
        N Engl J Med. 2019; 380: 347-357
        • Neal B.
        • Perkovic V.
        • Mahaffey K.W.
        • et al.
        Canagliflozin and cardiovascular and renal events in type 2 diabetes.
        N Engl J Med. 2017; 377: 644-657
        • Zinman B.
        • Wanner C.
        • Lachin J.M.
        • et al.
        Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes.
        N Engl J Med. 2015; 373: 2117-2128
        • Rosenstock J.
        • Marquard J.
        • Laffel L.M.
        • et al.
        Empagliflozin as adjunctive to insulin therapy in type 1 diabetes: the EASE trials.
        Diabetes Care. 2018; 41: 2560-2569
        • Dandona P.
        • Mathieu C.
        • Phillip M.
        • et al.
        Efficacy and safety of dapagliflozin in patients with inadequately controlled type 1 diabetes: the DEPICT-1 52-week study.
        Diabetes Care. 2018; 41: 2552-2559
        • Mathieu C.
        • Dandona P.
        • Gillard P.
        • et al.
        Efficacy and safety of dapagliflozin in patients with inadequately controlled type 1 diabetes—DEPICT-2 study.
        Diabetes. 2018; 67: 213
        • Dandona P.
        • Mathieu C.
        • Phillip M.
        • et al.
        Efficacy and safety of dapagliflozin in patients with inadequately controlled type 1 diabetes (DEPICT-1): 24 week results from a multicentre, double-blind, phase 3, randomised controlled trial.
        Lancet Diab Endocrinol. 2017; 5: 864-876
        • Garg S.K.
        • Henry R.R.
        • Banks P.
        • et al.
        Effects of sotagliflozin added to insulin in patients with type 1 diabetes.
        N Engl J Med. 2017; 377: 2337-2348
        • Buse J.B.
        • Garg S.K.
        • Rosenstock J.
        • et al.
        Sotagliflozin in Combination with optimized insulin therapy in adults with type 1 diabetes: the North American inTandem1 study.
        Diabetes Care. 2018; (dc180343)
        • Danne T.
        • Cariou B.
        • Banks P.
        • et al.
        HbA1c and hypoglycemia reductions at 24 and 52 weeks with sotagliflozin in combination with insulin in adults with type 1 diabetes: the European inTandem2 study.
        Diabetes Care. 2018; 41: 1981-1990
      2. First oral add-on treatment to insulin for treatment of certain patients with type 1 diabetes [press release]. European Medicines Agency, 01/02/2019; EMA/CHMP/46542/2019; 2019.

      3. New add-on treatment to insulin for treatment of certain patients with type 1 diabetes [press release]. European Medicines Agency; 01/03/2019.

        • Costacou T.
        • Orchard T.J.
        Cumulative kidney complication risk by 50 years of type 1 diabetes: the effects of sex, age, and calendar year at onset.
        Diabetes Care. 2018; 41: 426-433
        • Perkins B.A.
        • Bebu I.
        • de Boer I.H.
        • et al.
        Risk factors for kidney disease in type 1 diabetes.
        Diabetes Care. 2019; 42: 883-890
        • Zelnick L.R.
        • Weiss N.S.
        • Kestenbaum B.R.
        • et al.
        Diabetes and CKD in the United States population, 2009–2014.
        Clin J Am Soc Nephrol: CJASN. 2017; 12: 1984-1990
        • Papadopoulou-Marketou N.
        • Paschou S.A.
        • Marketos N.
        • Adamidi S.
        • Adamidis S.
        • Kanaka-Gantenbein C.
        Diabetic nephropathy in type 1 diabetes.
        Minerva Med. 2018; 109: 218-228
        • Groop P.H.
        • Thomas M.C.
        • Moran J.L.
        • et al.
        The presence and severity of chronic kidney disease predicts all-cause mortality in type 1 diabetes.
        Diabetes. 2009; 58: 1651-1658
        • Bjornstad P.
        • Cherney D.
        • Maahs D.M.
        Early diabetic nephropathy in type 1 diabetes: new insights.
        Curr Opin Endocrinol Diabetes Obes. 2014; 21: 279-286
        • Perkins B.A.
        • Ficociello L.H.
        • Silva K.H.
        • Finkelstein D.M.
        • Warram J.H.
        • Krolewski A.S.
        Regression of microalbuminuria in type 1 diabetes.
        N Engl J Med. 2003; 348: 2285-2293
        • Anders H.J.
        • Huber T.B.
        • Isermann B.
        • Schiffer M.
        CKD in diabetes: diabetic kidney disease versus nondiabetic kidney disease.
        Nat Rev Nephrol. 2018; 14: 361-377
        • Gagnum V.
        • Saeed M.
        • Stene L.C.
        • Leivestad T.
        • Joner G.
        • Skrivarhaug T.
        Low incidence of end-stage renal disease in childhood-onset type 1 diabetes followed for up to 42 years.
        Diabetes Care. 2018; 41: 420-425
        • Nishimura R.
        • Dorman J.S.
        • Bosnyak Z.
        • et al.
        Incidence of ESRD and survival after renal replacement therapy in patients with type 1 diabetes: a report from the Allegheny County Registry.
        Am J Kidney Dis: Off J Natl Kidney Found. 2003; 42: 117-124
        • Lecaire T.J.
        • Klein B.E.
        • Howard K.P.
        • Lee K.E.
        • Klein R.
        Risk for end-stage renal disease over 25 years in the population-based WESDR cohort.
        Diabetes Care. 2014; 37: 381-388
        • Finne P.
        • Reunanen A.
        • Stenman S.
        • Groop P.H.
        • Gronhagen-Riska C.
        Incidence of end-stage renal disease in patients with type 1 diabetes.
        JAMA. 2005; 294: 1782-1787
        • Helve J.
        • Sund R.
        • Arffman M.
        • et al.
        Incidence of end-stage renal disease in patients with type 1 diabetes.
        Diabetes Care. 2018; 41: 434-439
        • Toppe C.
        • Mollsten A.
        • Waernbaum I.
        • et al.
        Decreasing cumulative incidence of end-stage renal disease in young patients with type 1 diabetes in Sweden: a 38-year prospective nationwide study.
        Diabetes Care. 2019; 42: 27-31
        • Alicic R.Z.
        • Rooney M.T.
        • Tuttle K.R.
        Diabetic kidney disease: challenges, progress, and possibilities.
        Clin J Am Soc Nephrol: CJASN. 2017; 12: 2032-2045
        • Thorn L.M.
        • Gordin D.
        • Harjutsalo V.
        • et al.
        The presence and consequence of nonalbuminuric chronic kidney disease in patients with type 1 diabetes.
        Diabetes Care. 2015; 38: 2128-2133
        • Barrett E.J.
        • Liu Z.
        • Khamaisi M.
        • et al.
        Diabetic microvascular disease: an endocrine society scientific statement.
        J Clin Endocrinol Metab. 2017; 102: 4343-4410
        • Lin Y.C.
        • Chang Y.H.
        • Yang S.Y.
        • Wu K.D.
        • Chu T.S.
        Update of pathophysiology and management of diabetic kidney disease.
        J Formosan Med Assoc = Taiwan yi zhi. 2018; 117: 662-675
        • Retnakaran R.
        • Cull C.A.
        • Thorne K.I.
        • Adler A.I.
        • Holman R.R.
        • Group U.S.
        Risk factors for renal dysfunction in type 2 diabetes: U.K. prospective diabetes study 74.
        Diabetes. 2006; 55: 1832-1839
        • Mogensen C.E.
        • Christensen C.K.
        • Vittinghus E.
        The stages in diabetic renal disease. With emphasis on the stage of incipient diabetic nephropathy.
        Diabetes. 1983; 32: 64-78
        • Möllsten A.
        • Svensson M.
        • Waernbaum I.
        • et al.
        Cumulative risk, age at onset, and sex-specific differences for developing end-stage renal disease in young patients with type 1 diabetes: a nationwide population-based cohort study.
        Diabetes. 2010; 59: 1803-1808
        • Persson F.
        • Rossing P.
        Diagnosis of diabetic kidney disease: state of the art and future perspective.
        Kidney Int Suppl (2011). 2018; 8: 2-7
        • Molitch M.E.
        • Gao X.
        • Bebu I.
        • et al.
        Early glomerular hyperfiltration and long-term kidney outcomes in type 1 diabetes: the DCCT/EDIC experience.
        Clin J Am Soc Nephrol: CJASN. 2019; 14: 854-861
        • Sano R.
        • Shinozaki Y.
        • Ohta T.
        Sodium-glucose co-transporters: functional properties and pharmaceutical potential.
        J Diabetes Investig. 2020;
        • Vallon V.
        The mechanisms and therapeutic potential of SGLT2 inhibitors in diabetes mellitus.
        Annu Rev Med. 2015; 66: 255-270
        • Heerspink H.J.
        • Perkins B.A.
        • Fitchett D.H.
        • Husain M.
        • Cherney D.Z.
        Sodium glucose cotransporter 2 inhibitors in the treatment of diabetes mellitus: cardiovascular and kidney effects, potential mechanisms, and clinical applications.
        Circulation. 2016; 134: 752-772
        • Cherney D.Z.
        • Kanbay M.
        • Lovshin J.A.
        Renal physiology of glucose handling and therapeutic implications.
        Nephrol, Dial Transpl: Off Publ Eur Dial Transplant Assoc - Eur Renal Assoc. 2020; 35: i3-i12
        • Takiyama Y.
        • Haneda M.
        Hypoxia in diabetic kidneys.
        Biomed Res Int. 2014; 2014: 837421
        • Dominguez-Rieg J.A.
        • Rieg T.
        What does sodium-glucose co-transporter 1 inhibition add: prospects for dual inhibition.
        Diab Obesity Metab. 2019; 21: 43-52
        • Jha V.
        • Garcia-Garcia G.
        • Iseki K.
        • et al.
        Chronic kidney disease: global dimension and perspectives.
        Lancet (London, England). 2013; 382: 260-272
        • Collins A.J.
        • Foley R.N.
        • Herzog C.
        • et al.
        US renal data system 2010 annual data report.
        Am J Kidney Dis: Off J Natl Kidney Found. 2011; 57 (e1-256): A8
        • Vistisen D.
        • Andersen G.S.
        • Hulman A.
        • Persson F.
        • Rossing P.
        • Jørgensen M.E.
        Progressive decline in estimated glomerular filtration rate in patients with diabetes after moderate loss in kidney function-even without albuminuria.
        Diabetes Care. 2019; 42: 1886-1894
        • MacIsaac R.J.
        • Ekinci E.I.
        Progression of diabetic kidney disease in the absence of albuminuria.
        Diabetes Care. 2019; 42: 1842-1844
        • Mauer M.
        • Zinman B.
        • Gardiner R.
        • et al.
        Renal and retinal effects of enalapril and losartan in type 1 diabetes.
        N Engl J Med. 2009; 361: 40-51
        • Marcovecchio M.L.
        • Chiesa S.T.
        • Bond S.
        • et al.
        ACE inhibitors and statins in adolescents with type 1 diabetes.
        N Engl J Med. 2017; 377: 1733-1745
        • Yusuf S.
        • Teo K.K.
        • Pogue J.
        • et al.
        Telmisartan, ramipril, or both in patients at high risk for vascular events.
        N Engl J Med. 2008; 358: 1547-1559
        • Parving H.-H.
        • Brenner B.M.
        • McMurray J.J.V.
        • et al.
        Cardiorenal end points in a trial of aliskiren for type 2 diabetes.
        N Engl J Med. 2012; 367: 2204-2213
        • Heerspink H.J.L.
        • Parving H.H.
        • Andress D.L.
        • et al.
        Atrasentan and renal events in patients with type 2 diabetes and chronic kidney disease (SONAR): a double-blind, randomised, placebo-controlled trial.
        Lancet (London, England). 2019; 393: 1937-1947
        • de Zeeuw D.
        • Akizawa T.
        • Audhya P.
        • et al.
        Bardoxolone methyl in type 2 diabetes and stage 4 chronic kidney disease.
        N Engl J Med. 2013; 369: 2492-2503
        • Yin W.L.
        • Bain S.C.
        • Min T.
        The effect of glucagon-like peptide-1 receptor agonists on renal outcomes in type 2 diabetes.
        Diab Ther: Res, Treat Educ Diab Related Disord. 2020; 11: 835-844
        • Bakris G.L.
        • Agarwal R.
        • Anker S.D.
        • et al.
        Design and baseline characteristics of the finerenone in reducing kidney failure and disease progression in diabetic kidney disease trial.
        Am J Nephrol. 2019; 50: 333-344
        • Ruilope L.M.
        • Agarwal R.
        • Anker S.D.
        • et al.
        Design and baseline characteristics of the finerenone in reducing cardiovascular mortality and morbidity in diabetic kidney disease trial.
        Am J Nephrol. 2019; 50: 345-356
        • Ito S.
        • Shikata K.
        • Nangaku M.
        • Okuda Y.
        • Sawanobori T.
        Efficacy and safety of esaxerenone (CS-3150) for the treatment of type 2 diabetes with microalbuminuria: a randomized, double-blind, placebo-controlled, phase II trial.
        Clin J Am Soc Nephrol: CJASN. 2019; 14: 1161-1172
        • Bolignano D.
        • Palmer S.C.
        • Navaneethan S.D.
        • Strippoli G.F.
        Aldosterone antagonists for preventing the progression of chronic kidney disease.
        Cochrane Database Syst Rev. 2014; (Cd007004)
        • Epstein M.
        • Williams G.H.
        • Weinberger M.
        • et al.
        Selective aldosterone blockade with eplerenone reduces albuminuria in patients with type 2 diabetes.
        Clin J Am Soc Nephrol. 2006; 1: 940-951
        • Gembillo G.
        • Cernaro V.
        • Salvo A.
        • et al.
        Role of vitamin D status in diabetic patients with renal disease.
        Medicina (Kaunas). 2019; 55: 273
        • Liyanage P.
        • Lekamwasam S.
        • Weerarathna T.P.
        • Liyanage C.
        Effect of Vitamin D therapy on urinary albumin excretion, renal functions, and plasma renin among patients with diabetic nephropathy: a randomized, double-blind clinical trial.
        J Postgrad Med. 2018; 64: 10-15
        • Tiryaki Ö.
        • Usalan C.
        • Sayiner Z.A.
        Vitamin D receptor activation with calcitriol for reducing urinary angiotensinogen in patients with type 2 diabetic chronic kidney disease.
        Ren Fail. 2016; 38: 222-227
        • Cleland S.J.
        • Fisher B.M.
        • Colhoun H.M.
        • Sattar N.
        • Petrie J.R.
        Insulin resistance in type 1 diabetes: what is 'double diabetes' and what are the risks?.
        Diabetologia. 2013; 56: 1462-1470
        • Bjornstad P.
        • Maahs D.M.
        • Duca L.M.
        • et al.
        Estimated insulin sensitivity predicts incident micro- and macrovascular complications in adults with type 1 diabetes over 6 years: the coronary artery calcification in type 1 diabetes study.
        J Diabetes Complications. 2016; 30: 586-590
        • Maffeis C.
        • Birkebaek N.H.
        • Konstantinova M.
        • et al.
        Prevalence of underweight, overweight, and obesity in children and adolescents with type 1 diabetes: data from the international SWEET registry.
        Pediatric Diabetes. 2018; 19: 1211-1220
        • Corbin K.D.
        • Driscoll K.A.
        • Pratley R.E.
        • et al.
        Obesity in type 1 diabetes: pathophysiology, clinical impact, and mechanisms.
        Endocr Rev. 2018; 39: 629-663
        • DuBose S.N.
        • Hermann J.M.
        • Tamborlane W.V.
        • et al.
        Obesity in youth with type 1 diabetes in Germany, Austria, and the United States.
        J Pediatr. 2015; 167 (e621-624): 627-632
        • Melin E.O.
        • Thulesius H.O.
        • Hillman M.
        • Landin-Olsson M.
        • Thunander M.
        Abdominal obesity in type 1 diabetes associated with gender, cardiovascular risk factors and complications, and difficulties achieving treatment targets: a cross sectional study at a secondary care diabetes clinic.
        BMC Obes. 2018; 5: 15
        • Thorn L.M.
        • Forsblom C.
        • Fagerudd J.
        • et al.
        Metabolic syndrome in type 1 diabetes: association with diabetic nephropathy and glycemic control (the FinnDiane study).
        Diabetes Care. 2005; 28: 2019-2024
        • Merger S.R.
        • Kerner W.
        • Stadler M.
        • et al.
        Prevalence and comorbidities of double diabetes.
        Diabetes Res Clin Pract. 2016; 119: 48-56
        • Pambianco G.
        • Costacou T.
        • Orchard T.J.
        The prediction of major outcomes of type 1 diabetes: a 12-year prospective evaluation of three separate definitions of the metabolic syndrome and their components and estimated glucose disposal rate: the Pittsburgh Epidemiology of Diabetes Complications Study experience.
        Diabetes Care. 2007; 30: 1248-1254
        • Pieber T.R.
        • Famulla S.
        • Eilbracht J.
        • et al.
        Empagliflozin as adjunct to insulin in patients with type 1 diabetes: a 4-week, randomized, placebo-controlled trial (EASE-1).
        Diabetes Obes Metab. 2015; 17: 928-935
        • Mathieu C.
        • Dandona P.
        • Gillard P.
        • et al.
        Efficacy and safety of dapagliflozin in patients with inadequately controlled type 1 diabetes (the DEPICT-2 study): 24-week results from a randomized controlled trial.
        Diabetes Care. 2018; 41: 1938-1946
        • Henry R.R.
        • Thakkar P.
        • Tong C.
        • Polidori D.
        • Alba M.
        Efficacy and safety of canagliflozin, a sodium-glucose cotransporter 2 inhibitor, as add-on to insulin in patients with type 1 diabetes.
        Diabetes Care. 2015; 38: 2258-2265
        • Herrington W.G.
        • Preiss D.
        • Haynes R.
        • et al.
        The potential for improving cardio-renal outcomes by sodium-glucose co-transporter-2 inhibition in people with chronic kidney disease: a rationale for the EMPA-KIDNEY study.
        Clin Kidney J. 2018; 11: 749-761
      4. Lahtela JT, Edelman S, Jendle J, et al. Effect of adding dapagliflozin as an adjunct to insulin on urinary albumin-to-creatinine ratio over 52 weeks in adults with type 1 diabetes. In: Paper presented at: 55th Annual Meeting of the European Association for the Study of Diabetes (EASD), September 16–20, 2019, Barcelona, Spain; 2019.

        • van Raalte D.H.
        • Bjornstad P.
        • Persson F.
        • et al.
        The impact of sotagliflozin on renal function, albuminuria, blood pressure, and hematocrit in adults with type 1 diabetes.
        Diabetes Care. 2019; 42: 1921-1929
        • Roberts T.M.
        • Johnson J.F.
        • Vaughan A.G.
        Canagliflozin in type 1 diabetes: a case series of patient outcomes in a diabetes clinic.
        Diabetes Spectrum. 2019; 32: 47-51
        • Schnell O.
        • Valensi P.
        • Standl E.
        • Ceriello A.
        Comparison of mechanisms and transferability of outcomes of SGLT2 inhibition between type 1 and type 2 diabetes.
        Endocrinol Diabetes Metab. 2020; (n/a(n/a):e00129)
        • Brownlee M.
        The pathobiology of diabetic complications: a unifying mechanism.
        Diabetes. 2005; 54: 1615-1625
        • Intine R.V.
        • Sarras Jr., M.P.
        Metabolic memory and chronic diabetes complications: potential role for epigenetic mechanisms.
        Curr Diab Rep. 2012; 12: 551-559
        • Sarafidis P.
        • Ferro C.J.
        • Morales E.
        • et al.
        SGLT-2 inhibitors and GLP-1 receptor agonists for nephroprotection and cardioprotection in patients with diabetes mellitus and chronic kidney disease. A consensus statement by the EURECA-m and the DIABESITY working groups of the ERA-EDTA.
        Nephrol, Dial Transpl: Off Publ Eur Dial Transplant Assoc - Eur Renal Assoc. 2019; 34: 208-230
      5. Edelman S, Jendle J, Dandona P, et al. Effect of Adding Dapagliflozin as an Adjunct to Insulin on Urinary Albumin-to-Creatinine Ratio over 52 Weeks in Adults with Type 1 Diabetes. In. https://www.asn-online.org/education/kidneyweek/2018/program-abstract.aspx?controlId=3064879, 23-28 October 2018, San Diego, CA: ASN Kidney Week 2018. Abstract TH-PO1156; 2018.

        • Nakamura A.
        • Miyoshi H.
        • Kameda H.
        • Yamashita K.
        • Kurihara Y.
        Impact of sodium-glucose cotransporter 2 inhibitors on renal function in participants with type 2 diabetes and chronic kidney disease with normoalbuminuria.
        Diabetol Metab Syndrome. 2020; 12: 4
      6. Biester T, Nieswandt A, Biester S, et al. DAPADream: improved postprandial glucose control with dapagliflozin as add-on to full closed loop in type 1 diabetes | https://www.morressier.com/article/dapadream-improved-postprandial-glucose-control-dapagliflozin-addon-full-closed-loop-type-1-diabetes/59d51845d462b80296ca39ea. Published 2019. Updated 2019/02/12/. Accessed.

        • Wadén J.
        • Forsblom C.
        • Thorn L.M.
        • Gordin D.
        • Saraheimo M.
        • Groop P.H.
        A1C variability predicts incident cardiovascular events, microalbuminuria, and overt diabetic nephropathy in patients with type 1 diabetes.
        Diabetes. 2009; 58: 2649-2655
        • Tong L.
        • Chi C.
        • Zhang Z.
        Association of various glycemic variability indices and vascular outcomes in type-2 diabetes patients: a retrospective study.
        Medicine. 2018; 97: e10860
        • Subramanian S.
        • Hirsch I.B.
        Diabetic kidney disease: is there a role for glycemic variability?.
        Curr Diab Rep. 2018; 18: 13
        • Bonnet F.
        • Scheen A.J.
        Effects of SGLT2 inhibitors on systemic and tissue low-grade inflammation: the potential contribution to diabetes complications and cardiovascular disease.
        Diabetes Metab. 2018; 44: 457-464
        • Chen C.M.
        • Juan S.H.
        • Chou H.C.
        Hyperglycemia activates the renin-angiotensin system and induces epithelial-mesenchymal transition in streptozotocin-induced diabetic kidneys.
        J Renin-Angiotensin-Aldosterone Syst: JRAAS. 2018; 19 (1470320318803009)
        • Tuttle K.R.
        Back to the future: glomerular hyperfiltration and the diabetic kidney.
        Diabetes. 2017; 66: 14-16
        • de Boer I.H.
        • Rue T.C.
        • Cleary P.A.
        • et al.
        Long-term renal outcomes of patients with type 1 diabetes mellitus and microalbuminuria: an analysis of the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications cohort.
        Arch Intern Med. 2011; 171: 412-420
        • Cherney D.Z.
        • Perkins B.A.
        • Soleymanlou N.
        • et al.
        Renal hemodynamic effect of sodium-glucose cotransporter 2 inhibition in patients with type 1 diabetes mellitus.
        Circulation. 2014; 129: 587-597
        • Kopecky C.
        • Lytvyn Y.
        • Domenig O.
        • et al.
        Molecular regulation of the renin-angiotensin system by sodium-glucose cotransporter 2 inhibition in type 1 diabetes mellitus.
        Diabetologia. 2019; 62: 1090-1093
        • Lytvyn Y.
        • Skrtic M.
        • Yang G.K.
        • Yip P.M.
        • Perkins B.A.
        • Cherney D.Z.
        Glycosuria-mediated urinary uric acid excretion in patients with uncomplicated type 1 diabetes mellitus.
        Am J Physiol Renal Physiol. 2015; 308: F77-F83
        • Pizarro M.H.
        • Santos D.C.
        • Barros B.S.V.
        • de Melo L.G.N.
        • Gomes M.B.
        Serum uric acid and renal function in patients with type 1 diabetes: a nationwide study in Brazil.
        Diabetol Metab Syndrome. 2018; 10: 22
        • Jalal D.I.
        • Maahs D.M.
        • Hovind P.
        • Nakagawa T.
        Uric acid as a mediator of diabetic nephropathy.
        Semin Nephrol. 2011; 31: 459-465
        • Ahola A.J.
        • Sandholm N.
        • Forsblom C.
        • Harjutsalo V.
        • Dahlström E.
        • Groop P.H.
        The serum uric acid concentration is not causally linked to diabetic nephropathy in type 1 diabetes.
        Kidney Int. 2017; 91: 1178-1185
        • Afkarian M.
        • Polsky S.
        • Parsa A.
        • et al.
        Preventing early renal loss in diabetes (PERL) study: a randomized double-blinded trial of allopurinol—rationale, design, and baseline data.
        Diabetes Care. 2019; 42: 1454-1463
        • Doria A.
        • Galecki A.T.
        • Spino C.
        • et al.
        Serum urate lowering with allopurinol and kidney function in type 1 diabetes.
        N Engl J Med. 2020; 382: 2493-2503
        • Badve S.V.
        • Pascoe E.M.
        • Tiku A.
        • et al.
        Effects of allopurinol on the progression of chronic kidney disease.
        N Engl J Med. 2020; 382: 2504-2513
        • Cherney D.Z.
        • Perkins B.A.
        • Soleymanlou N.
        • et al.
        The effect of empagliflozin on arterial stiffness and heart rate variability in subjects with uncomplicated type 1 diabetes mellitus.
        Cardiovasc Diabetol. 2014; 13: 28
        • Theilade S.
        • Lajer M.
        • Persson F.
        • Joergensen C.
        • Rossing P.
        Arterial stiffness is associated with cardiovascular, renal, retinal, and autonomic disease in type 1 diabetes.
        Diabetes Care. 2013; 36: 715-721
        • Lytvyn Y.
        • Perkins B.A.
        • Cherney D.Z.
        Uric acid as a biomarker and a therapeutic target in diabetes.
        Can J Diabetes. 2015; 39: 239-246
        • Sano M.
        • Goto S.
        Possible mechanism of hematocrit elevation by sodium glucose cotransporter 2 inhibitors and associated beneficial renal and cardiovascular effects.
        Circulation. 2019; 139: 1985-1987
        • Ghanim H.
        • Hejna J.M.
        • Abuaysheh S.
        • et al.
        Dapagliflozin suppresses plasma hepcidin concentrations.
        Diabetes. 2018; 67: 1116
        • Dellamea B.S.
        • Leitao C.B.
        • Friedman R.
        • Canani L.H.
        Nitric oxide system and diabetic nephropathy.
        Diabetol Metab Syndrome. 2014; 6: 17
        • Lahnwong S.
        • Chattipakorn S.C.
        • Chattipakorn N.
        Potential mechanisms responsible for cardioprotective effects of sodium-glucose co-transporter 2 inhibitors.
        Cardiovasc Diabetol. 2018; 17: 101
        • Huang F.
        • Zhao Y.
        • Wang Q.
        • et al.
        Dapagliflozin attenuates renal tubulointerstitial fibrosis associated with type 1 diabetes by regulating STAT1/TGFbeta1 signaling.
        Front Endocrinol. 2019; 10: 441
        • Fellinger P.
        • Fuchs D.
        • Wolf P.
        • et al.
        Overweight and obesity in type 1 diabetes equal those of the general population.
        Wien Klin Wochenschr. 2019; 131: 55-60
        • Foster M.C.
        • Hwang S.J.
        • Larson M.G.
        • et al.
        Overweight, obesity, and the development of stage 3 CKD: the Framingham Heart Study.
        Am J Kidney Dis: Off J Natl Kidney Found. 2008; 52: 39-48
        • Hsu C.Y.
        • McCulloch C.E.
        • Iribarren C.
        • Darbinian J.
        • Go A.S.
        Body mass index and risk for end-stage renal disease.
        Ann Intern Med. 2006; 144: 21-28
        • Ejerblad E.
        • Fored C.M.
        • Lindblad P.
        • Fryzek J.
        • McLaughlin J.K.
        • Nyrén O.
        Obesity and risk for chronic renal failure.
        J Am Soc Nephrol: JASN. 2006; 17: 1695-1702
        • Tonneijck L.
        • Muskiet M.H.
        • Smits M.M.
        • et al.
        Glomerular hyperfiltration in diabetes: mechanisms, clinical significance, and treatment.
        J Am Soc Nephrol: JASN. 2017; 28: 1023-1039
        • Maric-Bilkan C.
        Obesity and diabetic kidney disease.
        Med Clin North Am. 2013; 97: 59-74
        • Pereira M.J.
        • Eriksson J.W.
        Emerging role of SGLT-2 inhibitors for the treatment of obesity.
        Drugs. 2019; 79: 219-230
        • Seufert J.
        SGLT2 inhibitors - an insulin-independent therapeutic approach for treatment of type 2 diabetes: focus on canagliflozin.
        Diab, Metab Syndrome Obesity: Targ Ther. 2015; 8: 543-554
        • Ferrannini E.
        • Baldi S.
        • Frascerra S.
        • et al.
        Shift to Fatty substrate utilization in response to sodium-glucose cotransporter 2 inhibition in subjects without diabetes and patients with type 2 diabetes.
        Diabetes. 2016; 65: 1190-1195
        • Osataphan S.
        • Macchi C.
        • Singhal G.
        • et al.
        SGLT2 inhibition reprograms systemic metabolism via FGF21-dependent and -independent mechanisms.
        JCI Insight. 2019; 4
        • Xu L.
        • Ota T.
        Emerging roles of SGLT2 inhibitors in obesity and insulin resistance: focus on fat browning and macrophage polarization.
        Adipocyte. 2018; 7: 121-128
        • Chagnac A.
        • Herman M.
        • Zingerman B.
        • et al.
        Obesity-induced glomerular hyperfiltration: its involvement in the pathogenesis of tubular sodium reabsorption.
        Nephrol, Dial Transpl: Off Publ Eur Dial Transplant Assoc - Eur Renal Assoc. 2008; 23: 3946-3952
        • Petit J.M.
        • Pedro L.
        • Guiu B.
        • et al.
        Type 1 diabetes is not associated with an increased prevalence of hepatic steatosis.
        Diab Med: J Brit Diab Assoc. 2015; 32: 1648-1651
        • Scheen A.J.
        Beneficial effects of SGLT2 inhibitors on fatty liver in type 2 diabetes: a common comorbidity associated with severe complications.
        Diabetes Metab. 2019; 45: 213-223
        • Jung C.-H.
        • Mok J.-O.
        The Effects of hypoglycemic agents on non-alcoholic fatty liver disease: focused on sodium-glucose cotransporter 2 inhibitors and glucagon-like peptide-1 receptor agonists.
        J Obes Metab Syndr. 2019; 28: 18-29
        • Wanner C.
        • Marx N.
        SGLT2 inhibitors: the future for treatment of type 2 diabetes mellitus and other chronic diseases.
        Diabetologia. 2018; 61: 2134-2139
        • Akuta N.
        • Kawamura Y.
        • Watanabe C.
        • et al.
        Impact of sodium glucose cotransporter 2 inhibitor on histological features and glucose metabolism of non-alcoholic fatty liver disease complicated by diabetes mellitus.
        Hepatol Res. 2019; 49: 531-539
        • Akuta N.
        • Watanabe C.
        • Kawamura Y.
        • et al.
        Effects of a sodium-glucose cotransporter 2 inhibitor in nonalcoholic fatty liver disease complicated by diabetes mellitus: preliminary prospective study based on serial liver biopsies.
        Hepatol Commun. 2017; 1: 46-52
        • Seko Y.
        • Nishikawa T.
        • Umemura A.
        • et al.
        Efficacy and safety of canagliflozin in type 2 diabetes mellitus patients with biopsy-proven nonalcoholic steatohepatitis classified as stage 1–3 fibrosis.
        Diab, Metab Syndrome Obesity: Targ Ther. 2018; 11: 835-843
        • Mathieu C.
        • Dandona P.
        • Phillip M.
        • et al.
        SAT-LB025 analysis of benefit/risk in the subgroup of patients with BMI of equal or larger than 27 kg/m2 in the dapagliflozin DEPICT-1 and -2 trials in type 1 diabetes.
        J Endocrine Soc. 2019; 3