Clinical usefulness of multigene screening with phenotype-driven bioinformatics analysis for the diagnosis of patients with monogenic diabetes or severe insulin resistance

Published:September 21, 2020DOI:https://doi.org/10.1016/j.diabres.2020.108461

      Abstract

      Aims

      Monogenic diabetes is clinically heterogeneous and differs from common forms of diabetes (type 1 and 2). We aimed to investigate the clinical usefulness of a comprehensive genetic testing system, comprised of targeted next-generation sequencing (NGS) with phenotype-driven bioinformatics analysis in patients with monogenic diabetes, which uses patient genotypic and phenotypic data to prioritize potentially causal variants.

      Methods

      We performed targeted NGS of 383 genes associated with monogenic diabetes or common forms of diabetes in 13 Japanese patients with suspected (n = 10) or previously diagnosed (n = 3) monogenic diabetes or severe insulin resistance. We performed in silico structural analysis and phenotype-driven bioinformatics analysis of candidate variants from NGS data.

      Results

      Among the patients suspected having monogenic diabetes or insulin resistance, we diagnosed 3 patients as subtypes of monogenic diabetes due to disease-associated variants of INSR, LMNA, and HNF1B. Additionally, in 3 other patients, we detected rare variants with potential phenotypic effects. Notably, we identified a novel missense variant in TBC1D4 and an MC4R variant, which together may cause a mixed phenotype of severe insulin resistance.

      Conclusions

      This comprehensive approach could assist in the early diagnosis of patients with monogenic diabetes and facilitate the provision of tailored therapy.

      Keywords

      To read this article in full you will need to make a payment

      References

        • Wood A.C.H.
        • Abreu D.
        • Clark A.L.
        • Malbas M.A.
        • Sprague J.E.
        • McGill J.B.
        Genetic syndromes associated with diabetes.
        in: Draznin B. Philipson L.H. McGill J.B. Atypical diabetes. American Diabetes Association, Virginia2018: 395-421
        • Sanyoura M.
        • Letourneau L.
        • Knight Johnson A.E.
        • Del Gaudio D.
        • Greeley S.A.W.
        • Philipson L.H.
        • et al.
        GCK-MODY in the US monogenic diabetes registry: description of 27 unpublished variants.
        Diabetes Res Clin Pract. 2019; 151: 231-236
        • Pearson E.R.
        • Starkey B.J.
        • Powell R.J.
        • Gribble F.M.
        • Clark P.M.
        • Hattersley A.T.
        Genetic cause of hyperglycaemia and response to treatment in diabetes.
        Lancet. 2003; 362: 1275-1281
        • Wright C.F.
        • FitzPatrick D.R.
        • Firth H.V.
        Paediatric genomics: diagnosing rare disease in children.
        Nat Rev Genet. 2018; 19: 253-268
        • Fujiwara T.
        • Yamamoto Y.
        • Kim J.D.
        • Buske O.
        • Takagi T.
        PubCaseFinder: a case-report-based, phenotype-driven differential-diagnosis system for rare diseases.
        Am J Hum Genet. 2018; 103: 389-399
        • Kohler S.
        • Vasilevsky N.A.
        • Engelstad M.
        • Foster E.
        • McMurry J.
        • Ayme S.
        • et al.
        The human phenotype ontology in 2017.
        Nucleic Acids Res. 2017; 45: D865-D876
        • Thuriot F.
        • Buote C.
        • Gravel E.
        • Chenier S.
        • Desilets V.
        • Maranda B.
        • et al.
        Clinical validity of phenotype-driven analysis software PhenoVar as a diagnostic aid for clinical geneticists in the interpretation of whole-exome sequencing data.
        Genet Med. 2018; 20: 942-949
        • Liu P.
        • Meng L.
        • Normand E.A.
        • Xia F.
        • Song X.
        • Ghazi A.
        • et al.
        Reanalysis of clinical exome sequencing data.
        N Engl J Med. 2019; 380: 2478-2480
        • Ellard S.
        • Lango Allen H.
        • De Franco E.
        • Flanagan S.E.
        • Hysenaj G.
        • Colclough K.
        • et al.
        Improved genetic testing for monogenic diabetes using targeted next-generation sequencing.
        Diabetologia. 2013; 56: 1958-1963
        • Bonnefond A.
        • Philippe J.
        • Durand E.
        • Muller J.
        • Saeed S.
        • Arslan M.
        • et al.
        Highly sensitive diagnosis of 43 monogenic forms of diabetes or obesity through one-step PCR-based enrichment in combination with next-generation sequencing.
        Diab Care. 2014; 37: 460-467
        • Alkorta-Aranburu G.
        • Carmody D.
        • Cheng Y.W.
        • Nelakuditi V.
        • Ma L.
        • Dickens J.T.
        • et al.
        Phenotypic heterogeneity in monogenic diabetes: the clinical and diagnostic utility of a gene panel-based next-generation sequencing approach.
        Mol Genet Metab. 2014; 113: 315-320
        • Ang S.F.
        • Lim S.C.
        • Tan C.S.
        • Fong J.C.
        • Kon W.Y.
        • Lian J.X.
        • et al.
        A preliminary study to evaluate the strategy of combining clinical criteria and next generation sequencing (NGS) for the identification of monogenic diabetes among multi-ethnic Asians.
        Diab Res Clin Pract. 2016; 119: 13-22
        • Donath X.
        • Saint-Martin C.
        • Dubois-Laforgue D.
        • Rajasingham R.
        • Mifsud F.
        • Ciangura C.
        • et al.
        Next-generation sequencing identifies monogenic diabetes in 16% of patients with late adolescence/adult-onset diabetes selected on a clinical basis: a cross-sectional analysis.
        BMC Med. 2019; 17: 132
        • de Santana L.S.
        • Caetano L.A.
        • Costa-Riquetto A.D.
        • Franco P.C.
        • Dotto R.P.
        • Reis A.F.
        • et al.
        Targeted sequencing identifies novel variants in common and rare MODY genes.
        Mol Genet Genomic Med. 2019; 7: e962
        • Park S.S.
        • Jang S.S.
        • Ahn C.H.
        • Kim J.H.
        • Jung H.S.
        • Cho Y.M.
        • et al.
        Identifying pathogenic variants of monogenic diabetes using targeted panel sequencing in an east Asian population.
        J Clin Endocrinol Metabolism. 2019; 104: 4188-4198
        • Kwak S.H.
        • Jung C.H.
        • Ahn C.H.
        • Park J.
        • Chae J.
        • Jung H.S.
        • et al.
        Clinical whole exome sequencing in early onset diabetes patients.
        Diab Res Clin Pract. 2016; 122: 71-77
        • Chong J.X.
        • Buckingham K.J.
        • Jhangiani S.N.
        • Boehm C.
        • Sobreira N.
        • Smith J.D.
        • et al.
        The genetic basis of mendelian phenotypes: discoveries, challenges, and opportunities.
        Am J Hum Genet. 2015; 97: 199-215
        • Gao R.
        • Liu Y.
        • Gjesing A.P.
        • Hollensted M.
        • Wan X.
        • He S.
        • et al.
        Evaluation of a target region capture sequencing platform using monogenic diabetes as a study-model.
        BMC Genet. 2014; 15: 13
        • Johansson S.
        • Irgens H.
        • Chudasama K.K.
        • Molnes J.
        • Aerts J.
        • Roque F.S.
        • et al.
        Exome sequencing and genetic testing for MODY.
        PLoS ONE. 2012; 7: e38050
        • Richards S.
        • Aziz N.
        • Bale S.
        • Bick D.
        • Das S.
        • Gastier-Foster J.
        • et al.
        Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology.
        Genet Med. 2015; 17: 405-424
      1. American Diabetes Association. Classification and diagnosis of diabetes. Sec. 2. In standards of medical care in diabetes—2020. Diab Care 2020;43(Suppl. 1):S14–S31

        • Hara K.
        • Noda M.
        • Waki H.
        • Tobe K.
        • Yamauchi T.
        • Kadowaki H.
        • et al.
        Maturity-onset diabetes of the young resulting from a novel mutation in the HNF-4alpha gene.
        Int Med. 2002; 41: 848-852
        • Hosoe J.
        • Kadowaki H.
        • Miya F.
        • Aizu K.
        • Kawamura T.
        • Miyata I.
        • et al.
        Structural basis and genotype-phenotype correlations of INSR mutations causing severe insulin resistance.
        Diabetes. 2017; 66: 2713-2723
        • Yamagata K.
        • Furuta H.
        • Oda N.
        • Kaisaki P.J.
        • Menzel S.
        • Cox N.J.
        • et al.
        Mutations in the hepatocyte nuclear factor-4alpha gene in maturity-onset diabetes of the young (MODY1).
        Nature. 1996; 384: 458-460
        • Kadowaki T.
        • Bevins C.L.
        • Cama A.
        • Ojamaa K.
        • Marcus-Samuels B.
        • Kadowaki H.
        • et al.
        Two mutant alleles of the insulin receptor gene in a patient with extreme insulin resistance.
        Science. 1988; 240: 787-790
        • Okamoto N.
        • Miya F.
        • Tsunoda T.
        • Kato M.
        • Saitoh S.
        • Yamasaki M.
        • et al.
        Targeted next-generation sequencing in the diagnosis of neurodevelopmental disorders.
        Clin Genet. 2015; 88: 288-292
        • Plagnol V.
        • Curtis J.
        • Epstein M.
        • Mok K.Y.
        • Stebbings E.
        • Grigoriadou S.
        • et al.
        A robust model for read count data in exome sequencing experiments and implications for copy number variant calling.
        Bioinformatics. 2012; 28: 2747-2754
        • Zemojtel T.
        • Kohler S.
        • Mackenroth L.
        • Jager M.
        • Hecht J.
        • Krawitz P.
        • et al.
        Effective diagnosis of genetic disease by computational phenotype analysis of the disease-associated genome.
        Sci Transl Med. 2014; 6 (252ra123)
        • Park S.Y.
        • Jin W.
        • Woo J.R.
        • Shoelson S.E.
        Crystal structures of human TBC1D1 and TBC1D4 (AS160) RabGTPase-activating protein (RabGAP) domains reveal critical elements for GLUT4 translocation.
        J Biol Chem. 2011; 286: 18130-18138
        • Huang Z.
        • Li Y.
        • Tang T.
        • Xu W.
        • Liao Z.
        • Yao B.
        • et al.
        Hyperinsulinaemic hypoglycaemia associated with a heterozygous missense mutation of R1174W in the insulin receptor (IR) gene.
        Clin Endocrinol (Oxf). 2009; 71: 659-665
        • Hussain I.
        • Patni N.
        • Ueda M.
        • Sorkina E.
        • Valerio C.M.
        • Cochran E.
        • et al.
        A novel generalized lipodystrophy-associated progeroid syndrome due to recurrent heterozygous LMNA p. T10I mutation.
        J Clin Endocrinol Metab. 2018; 103: 1005-1014
        • Dubois-Laforgue D.
        • Cornu E.
        • Saint-Martin C.
        • Coste J.
        • Bellanne-Chantelot C.
        • Timsit J.
        Diabetes, associated clinical spectrum, long-term prognosis, and genotype/phenotype correlations in 201 adult patients with hepatocyte nuclear factor 1B (HNF1B) molecular defects.
        Diab Care. 2017; 40: 1436-1443
        • Mefford H.C.
        • Clauin S.
        • Sharp A.J.
        • Moller R.S.
        • Ullmann R.
        • Kapur R.
        • et al.
        Recurrent reciprocal genomic rearrangements of 17q12 are associated with renal disease, diabetes, and epilepsy.
        Am J Hum Genet. 2007; 81: 1057-1069
        • Wang C.L.
        • Liang L.
        • Wang H.J.
        • Fu J.F.
        • Hebebrand J.
        • Hinney A.
        Several mutations in the melanocortin 4 receptor gene are associated with obesity in Chinese children and adolescents.
        J Endocrinol Invest. 2006; 29: 894-898
        • Sano H.
        • Kane S.
        • Sano E.
        • Miinea C.P.
        • Asara J.M.
        • Lane W.S.
        • et al.
        Insulin-stimulated phosphorylation of a Rab GTPase-activating protein regulates GLUT4 translocation.
        J Biol Chem. 2003; 278: 14599-14602
        • Dash S.
        • Sano H.
        • Rochford J.J.
        • Semple R.K.
        • Yeo G.
        • Hyden C.S.
        • et al.
        A truncation mutation in TBC1D4 in a family with acanthosis nigricans and postprandial hyperinsulinemia.
        Proc Natl Acad Sci USA. 2009; 106: 9350-9355
        • Moltke I.
        • Grarup N.
        • Jorgensen M.E.
        • Bjerregaard P.
        • Treebak J.T.
        • Fumagalli M.
        • et al.
        A common Greenlandic TBC1D4 variant confers muscle insulin resistance and type 2 diabetes.
        Nature. 2014; 512: 190-193
        • Astuti D.
        • Sabir A.
        • Fulton P.
        • Zatyka M.
        • Williams D.
        • Hardy C.
        • et al.
        Monogenic diabetes syndromes: locus-specific databases for Alstrom, Wolfram, and Thiamine-responsive megaloblastic anemia.
        Hum Mutat. 2017; 38: 764-777
        • Tatsi E.B.
        • Kanaka-Gantenbein C.
        • Scorilas A.
        • Chrousos G.P.
        • Sertedaki A.
        Next generation sequencing targeted gene panel in Greek MODY patients increases diagnostic accuracy.
        Pediatr Diab. 2020; 21: 28-39
        • Pollard M.O.
        • Gurdasani D.
        • Mentzer A.J.
        • Porter T.
        • Sandhu M.S.
        Long reads: their purpose and place.
        Hum Mol Genet. 2018; 27: R234-R241
        • Kuzuya H.
        • Matsuura N.
        • Sakamoto M.
        • Makino H.
        • Sakamoto Y.
        • Kadowaki T.
        • et al.
        Trial of insulinlike growth factor I therapy for patients with extreme insulin resistance syndromes.
        Diabetes. 1993; 42: 696-705