Chronotherapeutic efficacy of suvorexant on sleep quality and metabolic parameters in patients with type 2 diabetes and insomnia

Published:September 07, 2020DOI:https://doi.org/10.1016/j.diabres.2020.108412

      Highlights

      • This is the first report on the chronic effects of suvorexant in type 2 diabetes patients.
      • Suvorexant improved sleep quality, abdominal circumference, and sucrose intake.
      • Magnitude of sleep quality changes was associated with that in HbA1c and BW.

      Abstract

      Aims

      This study aimed to assess the chronotherapeutic efficacy of suvorexant on subjective sleep parameters and metabolic parameters in patients with type 2 diabetes and insomnia.

      Methods

      Thirteen patients with type 2 diabetes who met the Pittsburg Sleep Quality index criteria for primary insomnia took suvorexant 20 mg/day (15 mg/day for ≥65 years) for 14 ± 2 weeks. The following parameters were assessed before and after the treatment: sleep diary for sleep duration and quality (i.e., sleep onset latency, waking after sleep onset, and sleep efficiency [sSE]), Insomnia Severity Index, clinical and biochemical data, continuous glucose monitoring (CGM), and validated self-administered questionnaire on food intake.

      Results

      Suvorexant significantly improved sSE, abdominal circumference, and sucrose intake (all p < 0.05), but did not change HbA1c, CGM parameters, or body weight. Correlation analysis revealed that changes in sSE were associated with those in HbA1c and body weight (r = −0.61 and r = −0.66, respectively; both p < 0.05).

      Conclusions

      Suvorexant significantly improved sleep quality and obesity-associated parameters in patients with type 2 diabetes in 14 weeks. Improvements in sleep quality were associated with improvements in glycemic control. Sleep disorder treatment using suvorexant may provide metabolic benefits for patients with type 2 diabetes.

      Keywords

      To read this article in full you will need to make a payment

      References

        • Ford D.E.
        • Kamerow D.B.
        Epidemiologic study of sleep disturbances and psychiatric disorders. An opportunity for prevention?.
        JAMA. 1989; 262: 1479-1484https://doi.org/10.1001/jama.262.11.1479
        • Yoda K.
        • Inaba M.
        • Hamamoto K.
        • Yoda M.
        • Tsuda A.
        • Mori K.
        • et al.
        Association between poor glycemic control, impaired sleep quality, and increased arterial thickening in type 2 diabetic patients.
        PLoS ONE. 2015; 10e0122521https://doi.org/10.1371/journal.pone.0122521
        • Matsumoto T.
        • Murase K.
        • Tabara Y.
        • Gozal D.
        • Smith D.
        • Minami T.
        • et al.
        Impact of sleep characteristics and obesity on diabetes and hypertension across genders and menopausal status: the Nagahama study.
        Sleep. 2018; 41https://doi.org/10.1093/sleep/zsy071
        • Kita T.
        • Yoshioka E.
        • Satoh H.
        • Saijo Y.
        • Kawaharada M.
        • Okada E.
        • et al.
        Short sleep duration and poor sleep quality increase the risk of diabetes in Japanese workers with no family history of diabetes.
        Diabetes Care. 2012; 35: 313-318https://doi.org/10.2337/dc11-1455
        • Sakamoto R.
        • Yamakawa T.
        • Takahashi K.
        • Suzuki J.
        • Shinoda M.M.
        • Sakamaki K.
        • et al.
        Association of usual sleep quality and glycemic control in type 2 diabetes in Japanese: a cross sectional study. Sleep and Food Registry in Kanagawa (SOREKA).
        PLoS ONE. 2018; 13: e0191771https://doi.org/10.1371/journal.pone.0191771
        • Leproult R.
        • Deliens G.
        • Gilson M.
        • Peigneux P.
        Beneficial impact of sleep extension on fasting insulin sensitivity in adults with habitual sleep restriction.
        Sleep. 2015; 38: 707-715https://doi.org/10.5665/sleep.4660
        • Killick R.
        • Hoyos C.M.
        • Melehan K.L.
        • Dungan 2nd, G.C.
        • Poh J.
        • Liu P.Y.
        Metabolic and hormonal effects of 'catch-up' sleep in men with chronic, repetitive, lifestyle-driven sleep restriction.
        Clin Endocrinol (Oxf). 2015; 83: 498-507https://doi.org/10.1111/cen.12747
        • Pallayova M.
        • Donic V.
        • Tomori Z.
        Beneficial effects of severe sleep apnea therapy on nocturnal glucose control in persons with type 2 diabetes mellitus.
        Diabetes Res Clin Pract. 2008; 81: e8-e11https://doi.org/10.1016/j.diabres.2008.03.012
        • Buysse D.J.
        Insomnia.
        JAMA. 2013; 309: 706-716https://doi.org/10.1001/jama.2013.193
        • Gramaglia E.
        • Ramella Gigliardi V.
        • Olivetti I.
        • Tomelini M.
        • Belcastro S.
        • Calvi E.
        • et al.
        Impact of short-term treatment with benzodiazepines and imidazopyridines on glucose metabolism in healthy subjects.
        J Endocrinol Invest. 2014; 37: 203-206https://doi.org/10.1007/s40618-013-0016-y
        • Agil A.
        • Reiter R.J.
        • Jimenez-Aranda A.
        • Iban-Arias R.
        • Navarro-Alarcon M.
        • Marchal J.A.
        • et al.
        Melatonin ameliorates low-grade inflammation and oxidative stress in young Zucker diabetic fatty rats.
        J Pineal Res. 2013; 54: 381-388https://doi.org/10.1111/jpi.12012
        • Garfinkel D.
        • Zorin M.
        • Wainstein J.
        • Matas Z.
        • Laudon M.
        • Zisapel N.
        Efficacy and safety of prolonged-release melatonin in insomnia patients with diabetes: a randomized, double-blind, crossover study.
        Diabetes Metab Syndr Obes. 2011; 4: 307-313https://doi.org/10.2147/DMSO.S23904
        • Tsunoda T.
        • Yamada M.
        • Akiyama T.
        • Minami T.
        • Yoshii T.
        • Kondo Y.
        • et al.
        The effects of ramelteon on glucose metabolism and sleep quality in type 2 diabetic patients with insomnia: a pilot prospective randomized controlled trial.
        J Clin Med Res. 2016; 8: 878-887https://doi.org/10.14740/jocmr2754w
        • Svetnik V.
        • Snyder E.S.
        • Tao P.
        • Scammell T.E.
        • Roth T.
        • Lines C.
        • et al.
        Insight into reduction of wakefulness by suvorexant in patients with insomnia: analysis of wake bouts.
        Sleep. 2018; 41https://doi.org/10.1093/sleep/zsx178
        • Patterson R.E.
        • Kalavalapalli S.
        • Williams C.M.
        • Nautiyal M.
        • Mathew J.T.
        • Martinez J.
        • et al.
        Lipotoxicity in steatohepatitis occurs despite an increase in tricarboxylic acid cycle activity.
        Am J Physiol Endocrinol Metab. 2016; 310: E484-E494https://doi.org/10.1152/ajpendo.00492.2015
        • Michelson D.
        • Snyder E.
        • Paradis E.
        • Chengan-Liu M.
        • Snavely D.B.
        • Hutzelmann J.
        • et al.
        Safety and efficacy of suvorexant during 1-year treatment of insomnia with subsequent abrupt treatment discontinuation: a phase 3 randomised, double-blind, placebo-controlled trial.
        Lancet Neurol. 2014; 13: 461-471https://doi.org/10.1016/S1474-4422(14)70053-5
        • Kishi T.
        • Matsunaga S.
        • Iwata N.
        Suvorexant for primary insomnia: a systematic review and meta-analysis of randomized placebo-controlled trials.
        PLoS ONE. 2015; 10e0136910https://doi.org/10.1371/journal.pone.0136910
        • Buysse D.J.
        • Reynolds 3rd, C.F.
        • Monk T.H.
        • Berman S.R.
        • Kupfer D.J.
        The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research.
        Psychiatry Res. 1989; 28: 193-213https://doi.org/10.1016/0165-1781(89)90047-4
        • Iga R.
        • Uchino H.
        • Kanazawa K.
        • Usui S.
        • Miyagi M.
        • Kumashiro N.
        • et al.
        Glycemic variability in type 1 diabetes compared with degludec and glargine on the morning injection: an open-label randomized controlled trial.
        Diabetes Ther. 2017; 8: 783-792https://doi.org/10.1007/s13300-017-0269-0
        • Buse J.B.
        • Bergenstal R.M.
        • Glass L.C.
        • Heilmann C.R.
        • Lewis M.S.
        • Kwan A.Y.
        • et al.
        Use of twice-daily exenatide in Basal insulin-treated patients with type 2 diabetes: a randomized, controlled trial.
        Ann Intern Med. 2011; 154: 103-112https://doi.org/10.7326/0003-4819-154-2-201101180-00300
        • Kobayashi S.
        • Murakami K.
        • Sasaki S.
        • Okubo H.
        • Hirota N.
        • Notsu A.
        • et al.
        Comparison of relative validity of food group intakes estimated by comprehensive and brief-type self-administered diet history questionnaires against 16 d dietary records in Japanese adults.
        Public Health Nutr. 2011; 14: 1200-1211https://doi.org/10.1017/S1368980011000504
        • Shigiyama F.
        • Kumashiro N.
        • Furukawa Y.
        • Funayama T.
        • Takeno K.
        • Wakui N.
        • et al.
        Characteristics of hepatic insulin-sensitive nonalcoholic fatty liver disease.
        Hepatol Commun. 2017; 1: 634-647https://doi.org/10.1002/hep4.1077
        • Yoshikawa F.
        • Kumashiro N.
        • Shigiyama F.
        • Uchino H.
        • Ando Y.
        • Yoshino H.
        • et al.
        Efficacy of intermittent empagliflozin supplementation on dietary self-management and glycaemic control in patients with poorly controlled type 2 diabetes: a 24-week randomized controlled trial.
        Diabetes Obes Metab. 2019; 21: 303-311https://doi.org/10.1111/dom.13524
        • Horie I.
        • Abiru N.
        • Hongo R.
        • Nakamura T.
        • Ito A.
        • Haraguchi A.
        • et al.
        Increased sugar intake as a form of compensatory hyperphagia in patients with type 2 diabetes under dapagliflozin treatment.
        Diabetes Res Clin Pract. 2018; 135: 178-184https://doi.org/10.1016/j.diabres.2017.11.016
        • Bastien C.H.
        • Vallieres A.
        • Morin C.M.
        Validation of the insomnia severity index as an outcome measure for insomnia research.
        Sleep Med. 2001; 2: 297-307https://doi.org/10.1016/s1389-9457(00)00065-4
        • Skomro R.P.
        • Ludwig S.
        • Salamon E.
        • Kryger M.H.
        Sleep complaints and restless legs syndrome in adult type 2 diabetics.
        Sleep Med. 2001; 2: 417-422https://doi.org/10.1016/s1389-9457(01)00110-1
        • Herring W.J.
        • Connor K.M.
        • Snyder E.
        • Snavely D.B.
        • Zhang Y.
        • Hutzelmann J.
        • et al.
        Suvorexant in patients with insomnia: pooled analyses of three-month data from phase-3 randomized controlled clinical trials.
        J Clin Sleep Med. 2016; 12: 1215-1225https://doi.org/10.5664/jcsm.6116
        • Toi N.
        • Inaba M.
        • Kurajoh M.
        • Morioka T.
        • Hayashi N.
        • Hirota T.
        • et al.
        Improvement of glycemic control by treatment for insomnia with suvorexant in type 2 diabetes mellitus.
        J Clin Transl Endocrinol. 2019; 15: 37-44https://doi.org/10.1016/j.jcte.2018.12.006
        • Sperry S.D.
        • Scully I.D.
        • Gramzow R.H.
        • Jorgensen R.S.
        Sleep duration and waist circumference in adults: a meta-analysis.
        Sleep. 2015; 38: 1269-1276https://doi.org/10.5665/sleep.4906
        • Theorell-Haglow J.
        • Berne C.
        • Janson C.
        • Sahlin C.
        • Lindberg E.
        Associations between short sleep duration and central obesity in women.
        Sleep. 2010; 33: 593-598
        • Theorell-Haglow J.
        • Berglund L.
        • Janson C.
        • Lindberg E.
        Sleep duration and central obesity in women - differences between short sleepers and long sleepers.
        Sleep Med. 2012; 13: 1079-1085https://doi.org/10.1016/j.sleep.2012.06.013
        • Ford E.S.
        • Li C.
        • Wheaton A.G.
        • Chapman D.P.
        • Perry G.S.
        • Croft J.B.
        Sleep duration and body mass index and waist circumference among U.S. adults.
        Obesity (Silver Spring). 2014; 22: 598-607https://doi.org/10.1002/oby.20558
        • Schmid S.M.
        • Hallschmid M.
        • Jauch-Chara K.
        • Born J.
        • Schultes B.
        A single night of sleep deprivation increases ghrelin levels and feelings of hunger in normal-weight healthy men.
        J Sleep Res. 2008; 17: 331-334https://doi.org/10.1111/j.1365-2869.2008.00662.x
        • Fang Z.
        • Spaeth A.M.
        • Ma N.
        • Zhu S.
        • Hu S.
        • Goel N.
        • et al.
        Altered salience network connectivity predicts macronutrient intake after sleep deprivation.
        Sci Rep. 2015; 5: 8215https://doi.org/10.1038/srep08215
        • Nedeltcheva A.V.
        • Kessler L.
        • Imperial J.
        • Penev P.D.
        Exposure to recurrent sleep restriction in the setting of high caloric intake and physical inactivity results in increased insulin resistance and reduced glucose tolerance.
        J Clin Endocrinol Metab. 2009; 94: 3242-3250https://doi.org/10.1210/jc.2009-0483
        • Te Morenga L.
        • Mallard S.
        • Mann J.
        Dietary sugars and body weight: systematic review and meta-analyses of randomised controlled trials and cohort studies.
        BMJ. 2012; 346e7492https://doi.org/10.1136/bmj.e7492
        • Gibson S.A.
        Dietary sugars intake and micronutrient adequacy: a systematic review of the evidence.
        Nutr Res Rev. 2007; 20: 121-131https://doi.org/10.1017/S0954422407797846
        • Kuhnle G.G.
        • Tasevska N.
        • Lentjes M.A.
        • Griffin J.L.
        • Sims M.A.
        • Richardson L.
        • et al.
        Association between sucrose intake and risk of overweight and obesity in a prospective sub-cohort of the European Prospective Investigation into Cancer in Norfolk (EPIC-Norfolk).
        Public Health Nutr. 2015; 18: 2815-2824https://doi.org/10.1017/S1368980015000300
        • Haba-Rubio J.
        • Marques-Vidal P.
        • Andries D.
        • Tobback N.
        • Preisig M.
        • Vollenweider P.
        • et al.
        Objective sleep structure and cardiovascular risk factors in the general population: the HypnoLaus Study.
        Sleep. 2015; 38: 391-400https://doi.org/10.5665/sleep.4496
        • Feher M.
        • Hinton W.
        • Munro N.
        • de Lusignan S.
        Obstructive sleep apnoea in Type 2 diabetes mellitus: increased risk for overweight as well as obese people included in a national primary care database analysis.
        Diabet Med. 2019; 36: 1304-1311https://doi.org/10.1111/dme.13968