Advertisement

Low serum amylase, lipase, and trypsin as biomarkers of metabolic disorders: A systematic review and meta-analysis

Published:December 04, 2019DOI:https://doi.org/10.1016/j.diabres.2019.107974

      Abstract

      Aims

      While there is plentiful evidence on elevated serum levels of amylase, lipase, and trypsin in acute illness, low serum levels of these digestive enzymes have been studied infrequently. The aim was to systematically review published studies on the relationship between low serum levels of amylase, lipase, or trypsin and metabolic disorders.

      Methods

      The search was conducted in MEDLINE and Scopus databases. Studies in humans were included if they reported on the association between serum levels of amylase, lipase, or trypsin within normal range and metabolic disorders. Random-effects meta-analysis was conducted.

      Results

      A total of 20 studies encompassing 20,916 participants were included. Compared with healthy individuals, individuals with type 2 diabetes mellitus (mean difference = −5.3; p < 0.001), metabolic syndrome (mean difference = −5.1; p < 0.001), and overweight/obesity (mean difference = −0.8; p = 0.02) had significantly lower serum levels of amylase. Both individuals with type 1 diabetes mellitus (mean difference = −1.8; p < 0.001) and type 2 diabetes mellitus (mean difference = −0.8; p < 0.001) had significantly lower serum levels of lipase compared with healthy individuals. Data on serum trypsin were not suitable for meta-analysis. In the pooled analysis, individuals with type 2 diabetes mellitus had 3.1-times lower serum levels of amylase, 2.9-times lower serum levels of lipase, and 2.5-times lower serum levels of trypsin levels than the upper limits of normal for the three digestive enzymes.

      Conclusion

      Low serum levels of amylase and lipase are significantly associated with type 2 diabetes mellitus, type 1 diabetes mellitus, excess adiposity, and metabolic syndrome. The role of digestive enzymes in the pathogenesis of metabolic disorders warrants further investigations.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Diabetes Research and Clinical Practice
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Petrov M.S.
        • Yadav D.
        Global epidemiology and holistic prevention of pancreatitis.
        Nat Rev Gastroenterol Hepatol. 2019; 16: 175-184https://doi.org/10.1038/s41575-018-0087-5
        • Das S.L.
        • Kennedy J.I.C.
        • Murphy R.
        • Phillips A.R.
        • Windsor J.A.
        • Petrov M.S.
        Relationship between the exocrine and endocrine pancreas after acute pancreatitis.
        World J Gastroenterol. 2014; 20: 17196-17205https://doi.org/10.3748/wjg.v20.i45.17196
        • Cho J.
        • Scragg R.
        • Petrov M.S.
        Risk of mortality and hospitalization after post-pancreatitis diabetes mellitus vs type 2 diabetes mellitus: a population-based matched cohort study.
        Am J Gastroenterol. 2019; 114: 804-812https://doi.org/10.14309/ajg.0000000000000225
        • Arredouani A.
        • Stocchero M.
        • Culeddu N.
        • Moustafa J.E.S.
        • Tichet J.
        • Balkau B.
        • et al.
        Metabolomic profile of low-copy number carriers at the salivary α-amylase gene suggests a metabolic shift toward lipid-based energy production.
        Diabetes. 2016; 65: 3362-3368https://doi.org/10.2337/db16-0315
        • Kondo T.
        • Hayakawa T.
        • Shibata T.
        • Sato Y.
        • Toda Y.
        Serum levels of pancreatic enzymes in lean and obese subjects.
        Int J Pancreatol. 1988; 3: 241-248https://doi.org/10.1007/BF02788453
        • DeSouza S.V.
        • Singh R.G.
        • Yoon H.D.
        • Murphy R.
        • Plank L.D.
        • Petrov M.S.
        Pancreas volume in health and disease: a systematic review and meta-analysis.
        Expert Rev Gastroenterol Hepatol. 2018; 12: 757-766https://doi.org/10.1080/17474124.2018.1496015
        • Desouza S.V.
        • Yoon H.D.
        • Singh R.G.
        • Petrov M.S.
        Quantitative determination of pancreas size using anatomical landmarks and its clinical relevance: a systematic literature review.
        Clin Anat. 2018; 31: 913-926https://doi.org/10.1002/ca.23217
        • Lee J.G.
        • Park S.W.
        • Cho B.M.
        • Lee S.
        • Kim Y.J.
        • Jeong D.W.
        • et al.
        Serum amylase and risk of the metabolic syndrome in Korean adults.
        Clin Chim Acta. 2011; 412: 1848-1853https://doi.org/10.1016/j.cca.2011.06.023
        • Nakajima K.
        • Nemoto T.
        • Muneyuki T.
        • Kakei M.
        • Fuchigami H.
        • Munakata H.
        Low serum amylase in association with metabolic syndrome and diabetes: a community-based study.
        Cardiovasc Diabetol. 2011; 10: 34https://doi.org/10.1186/1475-2840-10-34
        • Zhao Y.
        • Zhang J.
        • Zhang J.
        • Wu J.
        • Chen Y.
        Metabolic syndrome and diabetes are associated with low serum amylase in a Chinese asymptomatic population.
        Scand J Clin Lab Invest. 2014; 74: 235-239https://doi.org/10.3109/00365513.2013.878469
        • Wu W.C.
        • Wang C.Y.
        Association between non-alcoholic fatty pancreatic disease (NAFPD) and the metabolic syndrome: case-control retrospective study.
        Cardiovasc Diabetol. 2013; 12: 1https://doi.org/10.1186/1475-2840-12-77
        • Yao J.
        • Zhao Y.
        • Zhang J.
        • Hong Y.
        • Lu H.
        • Wu J.
        Serum amylase levels are decreased in chinese non-alcoholic fatty liver disease patients.
        Lipids Health Dis. 2014; 13: 1-8https://doi.org/10.1186/1476-511X-13-185
        • Stang A.
        Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses.
        Eur J Epidemiol. 2010; 25: 603-605
      1. Higgins JP, Green S, editors. Systematic Reviews of Interventions Version 5.1.0 [updated March 2011]. Cochrane Handb., The Cochrane Collaboration; 2011.

      2. RevMan 5.1 Tutorial. Cochrane Collab 2014:1–43. http://www.medsci.cn/webeditor/uploadfile/201408/20140815214316360.pdf [accessed July 21, 2019].

        • Aughsteen A.A.
        • Abu-Umair M.S.
        • Mahmoud S.A.
        Biochemical analysis of serum pancreatic amylase and lipase enzymes in patients with type 1 and type 2 diabetes mellitus.
        Saudi Med J. 2005; 26: 73-77
        • Dandona P.
        • Freedman D.B.
        • Foo Y.
        • Perkins J.
        • Katrak A.
        • Mikhailidis D.P.
        • et al.
        Exocrine pancreatic function in diabetes mellitus.
        J Clin Pathol. 1984; 37: 302-306https://doi.org/10.1136/jcp.37.3.302
      3. Dias JP, Johnson GB, Villanueva-meyer JE, Cha S, Leynes AP, Eric P, et al. Association of abdominal fat with serum amylase in an older cohort: The Baltimore longitudinal study of aging 2016;46:1247–62. doi:10.1002/jmri.25711.PET/MRI.

        • Eleftheriou P.
        • Tseka E.
        • Varaga E.
        • Nasiou M.
        • Sampanis C.
        • Zografou I.
        • et al.
        Study of the lipidemic profile of diabetic patients. Negative correlation of cholesterol levels of diabetes type I patients with serum amylase concentration.
        Hell J Nucl Med. 2014; 17: 35-39
        • Foo Y.
        • Rosalki S.B.
        • Ramdial L.
        • Mikhailidis D.
        • Dandona P.
        Serum isoamylase activities in diabetes mellitus.
        J Clin Pathol. 1980; 33: 1102-1105https://doi.org/10.1136/jcp.33.11.1102
        • Lankisch P.G.
        • Manthey G.
        • Otto J.
        • Koop H.
        • Talaulicar M.
        • Willms B.
        • et al.
        Exocrine pancreatic function in insulin-dependent diabetes mellitus.
        Digestion. 1982; 25: 211-216https://doi.org/10.1159/000198833
        • Madole M.B.
        • Iyer C.M.
        • Madivalar M.T.
        • Wadde S.K.
        • Howale D.S.
        Evaluation of biochemical markers serum amylase and serum lipase for the assessment of pancreatic exocrine function in diabetes mellitus.
        J Clin Diagnostic Res. 2016; 10: BC01-BC04https://doi.org/10.7860/JCDR/2016/23787.8900
        • Muneyuki T.
        • Aoki A.
        • Yoshida M.
        • Ishikawa S.
        • Sugawara H.
        • Kawakami M.
        • et al.
        Latent associations of low serum amylase with decreased plasma insulin levels and insulin resistance in asymptomatic middle-aged adults.
        Cardiovasc Diabetol. 2012; 11: 1-9https://doi.org/10.1186/1475-2840-11-80
        • Nakajima K.
        • Oda E.
        Ketonuria may be associated with low serum amylase independent of body weight and glucose metabolism.
        Arch Physiol Biochem. 2017; 123: 293-296https://doi.org/10.1080/13813455.2017.1326941
        • Ozkok A.
        • Elcioglu O.C.
        • Cukadar T.
        • Bakan A.
        • Sasak G.
        • Atilgan K.G.
        • et al.
        Low serum pancreatic enzyme levels predict mortality and are associated with malnutrition-inflammation-atherosclerosis syndrome in patients with chronic kidney disease.
        Int Urol Nephrol. 2013; 45: 477-484https://doi.org/10.1007/s11255-012-0237-6
        • Ravisekar P.
        • Kalai Selvi V.S.
        • Manjula Devi A.J.
        • Shanthi B.
        Study of serum pancreatic enzymes in patients with type 2 diabetes mellitus.
        Res J Pharm Biol Chem Sci. 2015; 6: 144-146
        • Tak Y.J.
        • Yi Y.H.
        • Lee S.Y.
        • Kim Y.J.
        • Lee J.G.
        • Cho Y.H.
        Relationships between fasting serum amylase and ghrelin or peptide YY3-36 levels in healthy men.
        Pancreas. 2016; 45: 376-380https://doi.org/10.1097/MPA.0000000000000498
        • Zheng R.
        • Zhang J.
        • Zhao Y.
        • Zheng N.
        Low serum amylase is associated with gestational diabetes meelitus in chinese pregnant women.
        Clin Lab. 2015; 61: 1423-1428https://doi.org/10.1055/s-2004-815600
        • Zhuang L.
        • Bin Su.J.
        • Zhang X.L.
        • Huang H.Y.
        • Zhao L.H.
        • Xu F.
        • et al.
        Serum amylase levels in relation to islet β cell function in patients with early type 2 diabetes.
        PLoS ONE. 2016; 11: 1-14https://doi.org/10.1371/journal.pone.0162204
        • Mössner J.
        • Logsdon C.D.
        • Williams J.A.
        • Goldfine I.D.
        Insulin, via its own receptor, regulates growth and amylase synthesis in pancreatic ainar AR42J cells.
        Diabetes. 1985; 34: 891-897https://doi.org/10.2337/diab.34.9.891
        • Barreto S.G.
        • Carati C.J.
        • Toouli J.
        • Saccone G.T.P.
        The islet-acinar axis of the pancreas: more than just insulin.
        Am J Physiol - Gastrointest Liver Physiol. 2010; 299: 10-22https://doi.org/10.1152/ajpgi.00077.2010
        • Patel R.
        • Shervington A.
        • Pariente J.A.
        • Martinez-Burgos M.A.
        • Salido G.M.
        • Adeghate E.
        • et al.
        Mechanism of exocrine pancreatic insufficiency in streptozotocin-induced type 1 diabetes mellitus.
        Ann N Y Acad Sci. 2006; 1084: 71-88https://doi.org/10.1196/annals.1372.038
        • Merry T.L.
        • Petrov M.S.
        The rise of genetically engineered mouse models of pancreatitis: a review of literature.
        Biomol Concepts. 2018; 9: 103-114https://doi.org/10.1515/bmc-2018-0011
        • Bharmal S.H.
        • Pendharkar S.A.
        • Singh R.G.
        • Petrov M.S.
        Associations between gastrointestinal humoral factors and pancreatic proteolytic enzymes in alcohol-related versus non-alcohol-related pancreatitis.
        Alcohol. 2019; 76: 1-10https://doi.org/10.1016/j.alcohol.2018.06.005
        • Pendharkar S.A.
        • Asrani V.M.
        • Xiao A.Y.
        • Yoon H.D.
        • Murphy R.
        • Windsor J.A.
        • et al.
        Relationship between pancreatic hormones and glucose metabolism: a crosssectional study in patients after acute pancreatitis.
        Am J Physiol - Gastrointest Liver Physiol. 2016; 311: G50-G58https://doi.org/10.1152/ajpgi.00074.2016
        • Pendharkar S.A.
        • Singh R.G.
        • Petrov M.S.
        Cross-talk between innate cytokines and the pancreatic polypeptide family in acute pancreatitis.
        Cytokine. 2017; 90: 161-168https://doi.org/10.1016/j.cyto.2016.11.014
        • Sakamoto Y.
        • Inoue H.
        • Kawakami S.
        • Miyawaki K.
        • Miyamoto T.
        • Mizuta K.
        • et al.
        Expression and distribution of Gpr119 in the pancreatic islets of mice and rats: predominant localization in pancreatic polypeptide-secreting PP-cells.
        Biochem Biophys Res Commun. 2006; 351: 474-480https://doi.org/10.1016/j.bbrc.2006.10.076
        • Brereton M.F.
        • Vergari E.
        • Zhang Q.
        • Clark A.
        Alpha-, Delta- and PP-cells: are they the architectural cornerstones of islet structure and co-ordination?.
        J Histochem Cytochem. 2015; 63: 575-591https://doi.org/10.1369/0022155415583535
        • Śliwińska-Mossoń M.
        • Marek G.
        • Milnerowicz H.
        The role of pancreatic polypeptide in pancreatic diseases.
        Adv Clin Exp Med. 2017; 26: 1447-1455https://doi.org/10.17219/acem/65094
        • Lassmann V.
        • Vague P.
        • Vialettes B.
        • Simon M.C.
        Low plasma levels of pancreatic polypeptide in obesity.
        Diabetes. 1980; 29: 428-430https://doi.org/10.2337/diab.29.6.428
        • Ohbo M.
        • Katoh K.
        • Sasaki Y.
        Effects of saturated fatty acids on amylase release from exocrine pancreatic segments of sheep, rats, hamsters, field voles and mice.
        J Comp Physiol B. 1996; 166: 305-309
        • Adamska E.
        • Ostrowska L.
        • Goŕska M.
        • Kreţowski A.
        The role of gastrointestinal hormones in the pathogenesis of obesity and type 2 diabetes.
        Prz Gastroenterol. 2014; 9: 69-76https://doi.org/10.5114/pg.2014.42498
        • Koska J.
        • DelParigi A.
        • De Courten B.
        • Weyer C.
        • Tataranni P.A.
        Pancreatic polypeptide is involved in the regulation of body weight in Pima Indian male subjects.
        Diabetes. 2004; 53: 3091-3096https://doi.org/10.2337/diabetes.53.12.3091
        • Petrov M.S.
        Metabolic trifecta after pancreatitis: exocrine pancreatic dysfunction, altered gut microbiota, and new-onset diabetes.
        Clin Transl Gastroenterol. 2019; 10: e00086https://doi.org/10.14309/ctg.0000000000000086
        • Sun J.
        • Furio L.
        • Mecheri R.
        • van der Does A.M.
        • Lundeberg E.
        • Saveanu L.
        • et al.
        Pancreatic β-cells limit autoimmune diabetes via an immunoregulatory antimicrobial peptide expressed under the influence of the gut microbiota.
        Immunity. 2015; 43: 304-317https://doi.org/10.1016/j.immuni.2015.07.013
        • Frost F.
        • Kacprowski T.
        • Rühlemann M.
        • Bülow R.
        • Kühn J.P.
        • Franke A.
        • et al.
        Impaired exocrine pancreatic function associates with changes in intestinal microbiota composition and diversity.
        Gastroenterology. 2019; 156: 1010-1015https://doi.org/10.1053/j.gastro.2018.10.047
        • Perry R.J.
        • Peng L.
        • Barry N.A.
        • Cline G.W.
        • Zhang D.
        • Cardone R.L.
        • et al.
        Acetate mediates a microbiome-brain-B cell axis promoting metabolic Syndrome.
        Nature. 2016; 534: 213-217https://doi.org/10.1038/nature18309.Acetate
        • Vatanen T.
        • Franzosa E.A.
        • Schwager R.
        • Tripathi S.
        • Arthur T.D.
        • Vehik K.
        • et al.
        The human gut microbiome of early onset type 1 diabetes in the TEDDY study.
        Nature. 2018; 562: 589-594https://doi.org/10.1038/s41586-018-0620-2
        • Kim J.
        • Yun J.M.
        • Kim M.K.
        • Kwon O.
        • Cho B.
        Lactobacillus gasseri BNR17 supplementation reduces the visceral fat accumulation and waist circumference in obese adults: a randomized, double-blind, placebo-controlled trial.
        J Med Food. 2018; 21: 454-461https://doi.org/10.1089/jmf.2017.3937
        • Alisi A.
        • Bedogni G.
        • Baviera G.
        • Giorgio V.
        • Porro E.
        • Paris C.
        • et al.
        Randomised clinical trial: the beneficial effects of VSL#3 in obese children with non-alcoholic steatohepatitis.
        Aliment Pharmacol Ther. 2014; 39: 1276-1285https://doi.org/10.1111/apt.12758
        • Gomes A.C.
        • de Sousa R.G.M.
        • Botelho P.B.
        • Gomes T.L.N.
        • Prada P.O.
        • Mota J.F.
        The additional effects of a probiotic mix on abdominal adiposity and antioxidant Status: a double-blind, randomized trial.
        Obesity. 2017; 25: 30-38https://doi.org/10.1002/oby.21671
        • Bonnefond A.
        • Yengo L.
        • Dechaume A.
        • Canouil M.
        • Castelain M.
        • Roger E.
        • et al.
        Relationship between salivary/pancreatic amylase and body mass index: a systems biology approach.
        BMC Med. 2017; 15: 1-10https://doi.org/10.1186/s12916-017-0784-x
        • Singh R.G.
        • Nguyen N.N.
        • Cervantes A.
        • Kim J.U.
        • Stuart C.E.
        • Petrov M.S.
        Circulating levels of lipocalin-2 are associated with fatty pancreas but not fatty liver.
        Peptides. 2019; 119: 170117https://doi.org/10.1016/j.peptides.2019.170117
        • Singh R.G.
        • Nguyen N.N.
        • Cervantes A.
        • Cho J.
        • Petrov M.S.
        Serum lipid profile as a biomarker of intra-pancreatic fat deposition: a nested cross-sectional study.
        Nutr Metab Cardiovasc Dis. 2019; 29: 956-964https://doi.org/10.1016/j.numecd.2019.06.003
        • Singh R.G.
        • Nguyen N.N.
        • Cervantes A.
        • Alarcon Ramos G.C.
        • Cho J.
        • Petrov M.S.
        Associations between intra-pancreatic fat deposition and circulating levels of cytokines.
        Cytokine. 2019; 120: 107-114
        • Zhang X.
        • Cui Y.
        • Fang L.
        • Li F.
        Chronic high-fat diets induce oxide injuries and fibrogenesis of pancreatic cells in rats.
        Pancreas. 2008; 37: 31-38https://doi.org/10.1097/MPA.0b013e3181744b50
        • Singh R.G.
        • Yoon H.D.
        • Poppitt S.D.
        • Plank L.D.
        • Petrov M.S.
        Ectopic fat accumulation in the pancreas and its biomarkers: a systematic review and meta-analysis.
        Diabetes Metab Res Rev. 2017; 33: e2918https://doi.org/10.1002/dmrr.2918
        • Boden G.
        Obesity and free fatty acids.
        Endocrinol Metab Clin North Am. 2008; 37: 635-646https://doi.org/10.1016/j.ecl.2008.06.007
        • Jo Y.J.
        • Park J.Y.
        • Kim S.H.
        • Kim S.H.
        • Kim Y.S.
        • Son B.K.
        • et al.
        Clinical implications of fatty pancreas: correlations between fatty pancreas and metabolic syndrome.
        World J Gastroenterol. 2009; 15: 1869https://doi.org/10.3748/wjg.15.1869
        • Fernandez-Real J.M.
        • Broch M.
        • Vendrell J.
        • Ricart W.
        Insulin resistance, inflammation, and serum fatty acid composition.
        Diabetes Care. 2003; 26: 1362-1368https://doi.org/10.2337/diacare.26.5.1362
        • Bonal C.
        • Thorel F.
        • Ait-Lounis A.
        • Reith W.
        • Trumpp A.
        • Herrera P.L.
        Pancreatic inactivation of c-Myc decreases acinar mass and transdifferentiates acinar cells into adipocytes in mice.
        Gastroenterology. 2009; 136: 309-319https://doi.org/10.1053/j.gastro.2008.10.015
        • Frier B.M.
        • Adrian T.E.
        • Saunders J.H.B.
        • Bloom S.R.
        Serum trypsin concentration and pancreatic trypsin secretion in insulin-dependent diabetes mellitus.
        J Dairy Res. 1980; 105: 297-300https://doi.org/10.1017/S0022029900033598
        • Bharmal S.H.
        • Pendharkar S.A.
        • Singh R.G.
        • Goodarzi M.O.
        • Pandol S.J.
        • Petrov M.S.
        Relationship between circulating levels of pancreatic proteolytic enzymes and pancreatic hormones.
        Pancreatology. 2017; 17: 876-883https://doi.org/10.1016/j.pan.2017.09.007