Advertisement

The right place for Sulphonylureas today: Part of ‘Review the Series: Implications of recent CVOTs in Type 2 diabetes mellitus

      Abstract

      The place of Sulphonylurea based insulin secretagogues in the management of Type 2 diabetes appears as controversial today as it was fifty years ago. Newer therapies are associated with less hypoglycaemia and weight gain than Sulphonylureas but currently cost more and lack assurances which come with long-term exposure. Emergence of recent CVOT data for SGLT-2 inhibitors and GLP-1 receptor agonists is likely to influence therapeutic choices and guidance is now supportive of their earlier use in cases at high risk of cardiovascular disease. Meta-analyses of Sulphonylurea trials have failed to indicate a consistent effect (positive or negative) on cardiovascular disease or mortality, although are limited by the relative scarcity of studies directly reporting these outcomes. The CAROLINA trial is reassuring in demonstrating cardiovascular safety for the Sulphonylurea Glimepiride when compared directly with the DPP-4 inhibitor Linagliptin, suggesting either of these agents would be relatively safe second line options after Metformin in the majority of patients. This review provides a balanced assessment of available Sulphonylurea treatments in the context of current cardiovascular outcome trial data (CVOT) data and hopefully assists informed decision making about the place of these drugs in contemporary glucose lowering practice.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Diabetes Research and Clinical Practice
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Abdelmoneim A.S.
        • Eurich D.T.
        • Light P.E.
        • et al.
        Cardiovascular safety of Sulphonylureas: over 40 years of continuous controversy without an answer.
        Diab Obes Metab. 2015; 17: 523-532
        • Thule P.M.
        • Umpierrez E.
        Sulphonylureas: a new look at an old therapy.
        Curr Diab Rep. 2014; 14: 473
        • Khunti K.
        • Chatterjee S.
        • Gerstein H.C.
        • Zoungas S.
        • Davies M.J.
        Do Sulphonylureas still have a place in clinical practice?.
        Lancet Diab Endocrinol. 2018; 6: 821-832
        • Vaccaro O.
        • Masulli M.
        • Nicolucci A.
        • Bonora E.
        • Del Prato S.
        • Maggioni A.P.
        • et al.
        Effects on the incidence of cardiovascular events of the addition of pioglitazone versus sulfonylureas in patients with type 2 diabetes inadequately controlled with metformin (TOSCA.IT): a randomised, multicentre trial.
        Lancet Diabetes Endocrinol. 2017; 5: 887-897
        • Goldner M.G.
        • Knatterud G.L.
        • Prout T.E.
        Effects of hypoglycaemic agents on vascular complications in patients with adult-onset diabetes. Clinical implications of UGDP results.
        JAMA. 1971; 218: 1400-1410
        • Burke M.A.
        • Mutharasan R.K.
        • Ardehali H.
        The sulfonylurea receptor, an atypical ATP-binding cassette protein, and its regulation of the KATP channel.
        Circ Res. 2008; 102: 164-176
        • Meier J.J.
        • Gallwitz B.
        • Schmidt W.E.
        • Mugge A.
        • Nauck M.A.
        Is impairment of ischaemic preconditioning by sulfonylurea drugs clinically important?.
        Heart. 2004; 90: 9-12
        • Abdelmoneim A.S.
        • Hasenbank S.E.
        • Seubert J.M.
        • Brocks D.R.
        • Light P.E.
        • Simpson S.H.
        Variations in tissue selectivity amongst insulin secretagogues: a systematic review.
        Diab Obes Metab. 2012; 14: 130-138
        • UK Prospective Diabetes Study (UKPDS) Group
        Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group.
        Lancet. 1998; 352: 837-853
        • Bain S.
        • Druyts E.
        • Balijepalli C.
        • et al.
        Cardiovascular events and all-cause mortality associated with Sulphonylureas compared with other antihyperglycaemic drugs: a Bayesian meta-analysis of survival data.
        Diab Obes Metab. 2017; 19: 329-335
        • Gangji A.S.
        • Cukierman T.
        • Gerstein H.C.
        • Goldsmith C.H.
        • Clase C.M.
        A systematic review and meta-analysis of hypoglycaemia and cardiovascular events: a comparison of glyburide with other secretagogues and with insulin.
        Diab Care. 2007; 30: 389-394
        • Monami M.
        • Genovese S.
        • Mannucci E.
        Cardiovascular safety of sulfonylureas: a meta-analysis of randomized clinical trials.
        Diab Obes Metab. 2013; 15: 938-953
        • Rados D.V.
        • Pinto L.C.
        • Remonti L.R.
        • Leitao C.B.
        • Gross J.L.
        The association between Sulphonylurea use and all-cause and cardiovascular mortality: a meta-analysis with trial sequential analysis of randomised controlled trials.
        PLoS Med. 2016; 13e1001992
        • Simpson S.H.
        • Lee J.
        • Choi S.
        • Vandermeer B.
        • Abdelmoneim A.S.
        • Featherstone T.R.
        Mortality risk among sulfonylureas: a systematic review and network meta-analysis.
        Lancet Diab Endocrinol. 2015; 3: 43-51
        • Danchin N.
        • Coste P.
        • Ferrieres J.
        • Steg P.G.
        • Cottin Y.
        • Blanchard D.
        • et al.
        Comparison of thrombolysis followed by broad use of percutaneous coronary intervention with primary percutaneous coronary intervention for ST-segment-elevation acute myocardial infarction: data from the French registry on acute ST-elevation myocardial infarction (FAST-MI).
        Circulation. 2008; 118: 268-276
        • Ekstrom N.
        • Svensson A.M.
        • Miftaraj M.
        • Franzen S.
        • Zethelius B.
        • Eliasson B.
        • et al.
        Cardiovascular safety of glucose-lowering agents as add-on medication to metformin treatment in type 2 diabetes: report from the Swedish National Diabetes Register.
        Diab Obes Metab. 2016; 18: 990-998
        • Mogensen U.M.
        • Andersson C.
        • Fosbol E.L.
        • Schramm T.K.
        • Vaag A.
        • Scheller N.M.
        • et al.
        Sulfonylurea in combination with insulin is associated with increased mortality compared with a combination of insulin and metformin in a retrospective Danish nationwide study.
        Diabetologia. 2015; 58: 50-58
        • Douros A.
        • Yin H.
        • Yu O.H.Y.
        • Filion K.B.
        • Azoulay L.
        • Suissa S.
        Pharmacologic differences of sulfonylureas and the risk of adverse cardiovascular and hypoglycaemic events.
        Diab Care. 2017; 40: 1506-1513
        • Marx N.
        • Rosenstock J.
        • Kahn S.E.
        • Zinman B.
        • Kastelein J.J.
        • Lachin J.M.
        • et al.
        Design and baseline characteristics of the CARdiovascular Outcome Trial of LINAgliptin Versus Glimepiride in Type 2 Diabetes (CAROLINA(R)).
        Diab Vasc Dis Res. 2015; 12: 164-174
        • Rosenstock J.
        • Kahn S.E.
        • Johansen O.E.
        • Zinman B.
        • Espeland M.A.
        • Woerle H.J.
        • et al.
        Effect of Linagliptin vs Glimepiride on major adverse cardiovascular outcomes in patients with type 2 diabetes: The CAROLINA randomized clinical trial.
        JAMA. 2019; 322: 1155-1166
        • Kannel W.B.
        • McGee D.L.
        Diabetes and cardiovascular disease. The Framingham study.
        JAMA. 1979; 241: 2035-2038
        • UK Prospective Diabetes Study (UKPDS) Group
        Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). UK Prospective Diabetes Study (UKPDS) Group.
        Lancet. 1998; 352: 854-865
      1. ACCORD Study G, Cushman WC, Evans GW, Byington RP, Goff DC Jr., Grimm RH Jr., et al. Effects of intensive blood-pressure control in type 2 diabetes mellitus. N Engl J Med 2010; 362(17): 1575–85.

        • The ADVANCE Collaborative
        Intensive blood glucose control and vascular outcomes in patients with Type 2 Diabetes.
        N Engl J Med. 2008; 358: 2560-2572
        • Holman R.R.
        • Paul S.K.
        • Bethel M.A.
        • Matthews D.R.
        • Neil H.A.
        10-Year follow-up of intensive glucose control in Type 2 diabetes.
        N Engl J Med. 2008; 359: 1577-1589
        • Zoungas S.
        • Chalmers J.
        • Neal B.
        • Billot L.
        • Li Q.
        • Hirakawa Y.
        • et al.
        Follow-up of blood-pressure lowering and glucose control in type 2 diabetes.
        N Engl J Med. 2014; 371: 1392-1406
        • ACCORD Study Group
        Nine-Year effects of 3.7 years of intensive glycaemic control on cardiovascular outcomes.
        Diab Care. 2016; 39: 701-708
        • Reaven P.D.
        • Emanuele N.V.
        • Wiitala W.L.
        • Bahn G.D.
        • Reda D.J.
        • McCarren M.
        • et al.
        Intensive glucose control in patients with Type 2 diabetes - 15-year follow-up.
        N Engl J Med. 2019; 380: 2215-2224
        • Zinman B.
        • Wanner C.
        • Lachin J.M.
        • Fitchett D.
        • Bluhmki E.
        • Hantel S.
        • et al.
        Empagliflozin, cardiovascular outcomes, and mortality in Type 2 diabetes.
        N Engl J Med. 2015; 373: 2117-2128
        • Neal B.
        • Perkovic V.
        • Mahaffey K.W.
        • de Zeeuw D.
        • Fulcher G.
        • Erondu N.
        • et al.
        Canagliflozin and cardiovascular and renal events in Type 2 diabetes.
        N Engl J Med. 2017; 377: 644-657
        • Marso S.P.
        • Daniels G.H.
        • Brown-Frandsen K.
        • Kristensen P.
        • Mann J.F.
        • Nauck M.A.
        • et al.
        Liraglutide and cardiovascular outcomes in Type 2 diabetes.
        N Engl J Med. 2016; 375: 311-322
        • Marso S.P.
        • Bain S.C.
        • Consoli A.
        • Eliaschewitz F.G.
        • Jodar E.
        • Leiter L.A.
        • et al.
        Semaglutide and cardiovascular outcomes in patients with Type 2 diabetes.
        N Engl J Med. 2016; 375: 1834-1844
        • Hernandez A.F.
        • Green J.B.
        • Janmohamed S.
        • D'Agostino Sr, R.B.
        • Granger C.B.
        • Jones N.P.
        • et al.
        Albiglutide and cardiovascular outcomes in patients with type 2 diabetes and cardiovascular disease (Harmony Outcomes): a double-blind, randomised placebo-controlled trial.
        Lancet. 2018; 392: 1519-1529
        • Gerstein H.C.
        • Colhoun H.M.
        • Dagenais G.R.
        • Diaz R.D.
        • Lakshmanan M.
        • Pais P.
        • et al.
        Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): a double-blind, randomised, placebo-controlled trial.
        Lancet. 2019; 394: 121-130
      2. U.S. Food and Drug Administration Center for Drug Evaluation and Research Guidance for Industry: Diabetes Mellitus – Evaluating Cardiovascular Risk in New Antidiabetic Therapies to Treat Type 2 Diabetes. Silver Spring, MD, U.S. Department of Health and Human Services; 2008. p. 1–5.

        • Wiviott S.D.
        • Raz I.
        • Bonaca M.P.
        • Mosenzon O.
        • Kato E.T.
        • Cahn A.
        • et al.
        Dapagliflozin and cardiovascular outcomes in Type 2 diabetes.
        N Engl J Med. 2019; 380: 347-357
        • Pfeffer M.A.
        • Claggett B.
        • Diaz R.
        • Dickstein K.
        • Gerstein H.C.
        • Kober L.V.
        • et al.
        Lixisenatide in patients with Type 2 diabetes and acute coronary syndrome.
        N Engl J Med. 2015; 373: 2247-2257
        • Holman R.R.
        • Bethel M.A.
        • Mentz R.J.
        • Thompson V.P.
        • Lokhnygina Y.
        • Buse J.B.
        • et al.
        Effects of once-weekly exenatide on cardiovascular outcomes in Type 2 diabetes.
        N Engl J Med. 2017; 377: 1228-1239
        • Rosenstock J.
        • Perkovic V.
        • Johansen E.
        • Cooper M.
        • Kahn S.E.
        • Marx N.
        • et al.
        Effect of Linagliptin versus placebo on major cardiovascular events in adults with type 2 diabetes and high cardiovascular and renal risk.
        JAMA. 2019; 321: 69-79
        • Green J.B.
        • Bethel M.A.
        • Armstrong P.W.
        • Buse J.B.
        • Engel S.S.
        • Garg J.
        • et al.
        Effect of Sitagliptin on cardiovascular outcomes in Type 2 diabetes.
        N Engl J Med. 2015; 373: 232-242
        • Scirica B.M.
        • Bhatt D.L.
        • Braunwald E.
        • Steg P.G.
        • Davidson J.
        • Hirshberg B.
        • et al.
        Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus.
        N Engl J Med. 2013; 369: 1317-1326
        • White W.B.
        • Cannon C.P.
        • Heller S.R.
        • Nissen S.E.
        • Bergenstal R.M.
        • Bakris G.L.
        • et al.
        Alogliptin after acute coronary syndrome in patients with type 2 diabetes.
        N Engl J Med. 2013; 369: 1327-1335
      3. Davies MJ, D'Alessio DA, Fradkin J, Kernan WN, Mathieu C, Mingrone G, et al. Management of Hyperglycaemia in Type 2 Diabetes, 2018. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 2018; 41(12): 2669–701.

        • Garber A.J.
        • Abrahamson M.J.
        • Barzilay J.I.
        • Blonde L.
        • Bloomgarden Z.T.
        • Bush M.A.
        • et al.
        Consensus Statement by the American Association of Clinical Endocrinologists and American College of Endocrinology on the Comprehensive Type 2 Diabetes Management Algorithm - 2018 Executive Summary.
        Endocr Pract. 2018; 24: 91-120
        • Khunti K.
        • Wolden M.L.
        • Thorsted B.L.
        • Andersen M.
        • Davies M.J.
        Clinical inertia in people with type 2 diabetes: a retrospective cohort study of more than 80,000 people.
        Diab Care. 2013; 36: 3411-3417
        • Chan S.P.
        • Colagiuri S.R.
        Systematic review and Meta-analysis of the efficacy and hypoglycaemic safety of gliclazide versus other insulinotropic agents.
        Diab Res Clin Pract. 2015; : 75-81
        • Hirst J.A.
        • Farmer A.J.
        • Dyar A.
        • Lung T.W.
        • Stevens R.J.
        Estimating the effect of sulfonylurea on HbA1c in diabetes: a systematic review and meta-analysis.
        Diabetologia. 2013; 56: 973-984
        • Phung O.J.
        • Scholle J.M.
        • Talwar M.
        • Coleman C.I.
        Effect of noninsulin antidiabetic drugs added to metformin therapy on glycaemic control, weight gain, and hypoglycaemia in type 2 diabetes.
        JAMA. 2010; 303: 1410-1418
        • Schopman J.E.
        • Simon A.C.
        • Hoefnagel S.J.
        • Hoekstra J.B.
        • Scholten R.J.
        • Holleman F.
        The incidence of mild and severe hypoglycaemia in patients with type 2 diabetes mellitus treated with Sulphonylureas: a systematic review and meta-analysis.
        Diab Metab Res Rev. 2014; 30: 11-22
        • Khunti K.
        • Godec T.R.
        • Medina J.
        • Garcia-Alvarez L.
        • Hiller J.
        • Gomes M.B.
        • et al.
        Patterns of glycaemic control in patients with type 2 diabetes mellitus initiating second-line therapy after metformin monotherapy: Retrospective data for 10256 individuals from the United Kingdom and Germany.
        Diab Obes Metab. 2018; 20: 389-399
        • Heald A.H.
        • Fryer A.A.
        • Anderson S.G.
        • Livingston M.
        • Lunt M.
        • Davies M.
        • et al.
        Sodium-glucose co-transporter-2 inhibitors, the latest residents on the block: Impact on glycaemic control at a general practice level in England.
        Diab Obes Metab. 2018; 20: 1659-1669
        • Shin M.S.
        • Yu J.H.
        • Jung C.H.
        • Hwang J.Y.
        • Lee W.J.
        • Kim M.S.
        • et al.
        The duration of sulfonylurea treatment is associated with beta-cell dysfunction in patients with type 2 diabetes mellitus.
        Diab Technol Ther. 2012; 14: 1033-1042
        • Maedler K.
        • Carr R.D.
        • Bosco D.
        • Zuellig R.A.
        • Berney T.
        • Donath M.Y.
        Sulfonylurea induced beta-cell apoptosis in cultured human islets.
        J Clin Endocrinol Metab. 2005; 90: 501-506
        • Del Prato S.
        • Nauck M.
        • Duran-Garcia S.
        • Maffei L.
        • Rohwedder K.
        • Theuerkauf A.
        • et al.
        Long-term glycaemic response and tolerability of dapagliflozin versus a sulphonylurea as add-on therapy to metformin in patients with type 2 diabetes: 4-year data.
        Diab Obes Metab. 2015; 17: 581-590
        • Kahn S.E.
        • Haffner S.M.
        • Heise M.A.
        • Herman W.H.
        • Holman R.R.
        • Jones N.P.
        • et al.
        Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy.
        N Engl J Med. 2006; 355: 2427-2443
        • Gallwitz B.
        • Rosenstock J.
        • Rauch T.
        • Bhattacharya S.
        • Patel S.
        • von Eynatten M.
        • et al.
        2-Year Efficacy and Safety of Linagliptin compared with glimepiride in patients with Type 2 diabetes inadequately controlled on metformin: a randomised, double-blind, Non-Inferiority Trial.
        Lancet. 2012; 380: 475-483
        • Zhang Y.
        • McCoy R.G.
        • Mason J.E.
        • Smith S.A.
        • Shah N.D.
        • Denton B.T.
        Second-line agents for glycaemic control for type 2 diabetes: are newer agents better?.
        Diab Care. 2014; 37: 1338-1345
        • Nathan D.M.
        • Buse J.B.
        • Kahn S.E.
        • Krause-Steinrauf H.
        • Larkin M.E.
        • Staten M.
        • et al.
        Rationale and design of the glycaemia reduction approaches in diabetes: a comparative effectiveness study (GRADE).
        Diab Care. 2013; 36: 2254-2261
        • Hanefeld M.
        • Frier B.M.
        • Pistrosch F.
        Hypoglycemia and cardiovascular risk: is there a major link?.
        Diab Care. 2016; 39: S205-S209
        • Selvin E.
        • Steffes M.W.
        • Zhu H.
        • Matsushita K.
        • Wagenknecht L.
        • Pankow J.
        • et al.
        Glycated hemoglobin, diabetes, and cardiovascular risk in nondiabetic adults.
        N Engl J Med. 2010; 362: 800-811
        • Rana O.A.
        • Byrne C.D.
        • Greaves K.
        Intensive glucose control and hypoglycaemia: a new cardiovascular risk factor?.
        Heart. 2014; 100: 21-27
      4. Sharma M, Nazareth I, Petersen I. Trends in incidence, prevalence and prescribing in type 2 diabetes mellitus between 2000 and 2013 in primary care: a retrospective cohort study. BMJ Open 2016 Jan; 6(1): e010210-2015-010210.

        • Desai N.R.
        • Shrank W.H.
        • Fischer M.A.
        • Avorn J.
        • Liberman J.N.
        • Schneeweiss S.
        • et al.
        Patterns of medication initiation in newly diagnosed diabetes mellitus: quality and cost implications.
        Am J Med. 2012; 125: 302.e1-302.e7
        • Rafaniello C.
        • Arcoraci V.
        • Ferrajolo C.
        • Sportiello L.
        • Sullo M.G.
        • Giorgianni F.
        • et al.
        Trends in the prescription of antidiabetic medications from 2009 to 2012 in a general practice of Southern Italy: a population-based study.
        Diab Res Clin Pract. 2015; 108: 157-163
        • Dunkley A.J.
        • Fitzpatrick C.
        • Gray L.J.
        • Waheed G.
        • Heller S.R.
        • Frier B.M.
        • et al.
        Incidence and severity of hypoglycaemia in type 2 diabetes by treatment regimen: a UK multisite 12-month prospective observational study.
        Diab Obes Metab. 2019; 21: 1585-1595
      5. NHS digital prescribing for diabetes England 2007/8 - 2017/18; 2018.

      6. Joint Formulary Committee; 2019. BNF 76.

        • Villareal D.T.
        • Koster J.C.
        • Robertson H.
        • Akrouh A.
        • Miyake K.
        • Bell G.I.
        • et al.
        Kir6.2 variant E23K increases ATP-sensitive K+ channel activity and is associated with impaired insulin release and enhanced insulin sensitivity in adults with normal glucose tolerance.
        Diabetes. 2009; 58: 1869-1878
        • Tarasov A.I.
        • Nicolson T.J.
        • Riveline J.P.
        • Taneja T.K.
        • Baldwin S.A.
        • Baldwin J.M.
        • et al.
        A rare mutation in ABCC8/SUR1 leading to altered ATP-sensitive K+ channel activity and beta-cell glucose sensing is associated with type 2 diabetes in adults.
        Diabetes. 2008; 57: 1595-1604
        • Vedovato N.
        • Cliff E.
        • Proks P.
        • Poovazhagi V.
        • Flanagan S.E.
        • Ellard S.
        • et al.
        Neonatal diabetes caused by a homozygous KCNJ11 mutation demonstrates that tiny changes in ATP sensitivity markedly affect diabetes risk.
        Diabetologia. 2016; 59: 1430-1436
        • Pearson E.R.
        • Flechtner I.
        • Njolstad P.R.
        • Malecki M.T.
        • Flanagan S.E.
        • Larkin B.
        • et al.
        Switching from insulin to oral sulfonylureas in patients with diabetes due to Kir6.2 mutations.
        N Engl J Med. 2006; 355: 467-477