Advertisement

The future of new drugs for diabetes management

      Abstract

      The future of the newer classes of glucose-lowering drugs, namely dipeptidyl peptidase-4 (DPP-4) inhibitors, glucagon-like peptide-1 receptor agonists (GLP-1RAs) and sodium/glucose co-transporter-2 (SGLT-2) inhibitors, is being redefined by the large prospective cardiovascular outcome trials (CVOTs). These trials have more than confirmed cardiovascular (CV) safety: indeed, various cardio-renal parameters have improved during some of the trials with GLP-1RAs and SGLT-2 inhibitors in type 2 diabetes. Benefits have included reductions in major adverse cardiovascular events such as fatal and non-fatal myocardial infarction and stroke, decreased hospitalization for heart failure, a slower decline in glomerular filtration rate and reduced onset and progression of albuminuria. In consequence, the CVOTs have raised expectations that newer glucose-lowering agents should offer advantages that extend beyond glycaemic control and weight management to address complications and comorbidities of type 2 diabetes, particularly cardio-renal diseases. Although large prospective outcome trials incur a high cost which may prompt reconsideration of their design, these trials are generating evidence to enable more exacting and more effective management of type 2 diabetes and its accompanying cardio-renal diseases.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Diabetes Research and Clinical Practice
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Arnold S.V.
        • Kosiborod M.
        • Wang J.
        • Fenici P.
        • Gannedahl G.
        • LoCasale R.J.
        Burden of cardio-renal-metabolic conditions in adults with type 2 diabetes within the Diabetes Collaborative Registry.
        Diabet Obes Metab. 2018; 20: 2000-2003
        • Tancredi M.
        • Rosengren A.
        • Svensson A.M.
        • Kosiborod M.
        • Pivodic A.
        • Gudbjörnsdottir S.
        • et al.
        Excess mortality among persons with type 2 diabetes.
        N Engl J Med. 2015; 373: 1720-1732
        • Di Angelantonio E.
        • Kaptoge S.
        • Wormser D.
        • Willeit P.
        • Butterworth A.S.
        • Bansal N.
        • et al.
        Association of cardiometabolic multimorbidity with mortality.
        JAMA. 2015; 314: 52-60
        • Rawshani A.
        • Rawshani A.
        • Franzén S.
        • Eliasson B.
        • Svensson A.M.
        • Miftaraj M.
        • et al.
        Mortality and cardiovascular disease in type 1 and type 2 diabetes.
        N Engl J Med. 2017; 376: 1407-1418
        • Einarson T.R.
        • Acs A.
        • Ludwig C.
        • Panton U.H.
        Prevalence of cardiovascular disease in type 2 diabetes: a systematic literature review of scientific evidence from across the world in 2007–2017.
        Cardiovasc Diabetol. 2018; 17https://doi.org/10.1186/s12933-018-0728-6
        • Afkarian M.
        • Sachs M.C.
        • Kestenbaum B.
        • Hirsch I.B.
        • Tuttle K.R.
        • Himmelfarb J.
        • et al.
        Kidney disease and increased mortality risk in type 2 diabetes.
        J Am Soc Nephrol. 2013; 24: 302-308
        • Wen C.P.
        • Chang C.H.
        • Tsai M.K.
        • Lee J.H.
        • Lu P.J.
        • Tsai S.P.
        • et al.
        Diabetes with early kidney involvement may shorten life expectancy by 16 years.
        Kidney Int. 2017; 92: 388-396https://doi.org/10.1016/j.kint.2017.01.030
        • Inzucchi S.E.
        • Bergenstal R.M.
        • Buse J.B.
        • Diamant M.
        • Ferrannini E.
        • Nauck M.
        • et al.
        Management of hyperglycemia in type 2 diabetes, 2015: a patient-centered approach: update to a position statement of the American Diabetes Association and the European Association for the Study of Diabetes.
        Diabet Care. 2015; 38: 140-149
        • Davies M.J.
        • D’Alessio D.A.
        • Fradkin J.
        • Kernan W.N.
        • Mathieu C.
        • Mingrone G.
        • et al.
        A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD).
        Diabet Care. 2018; 2018: 2669-2701
        • Garber A.J.
        • Abrahamson M.J.
        • Barzilay J.I.
        • Blonde L.
        • Bloomgarden Z.T.
        • Bush M.A.
        • et al.
        Consensus statement by the American Association of Clinical Endocrinologists and American College of Endocrinology on the comprehensive type 2 diabetes management algorithm – 2017.
        Endocrine Pract. 2017; 23: 207-238
      1. US Department of Health and Human Services Food and Drug Administration. Guidance for Industry. Diabetes Mellitus - Evaluating Cardiovascular Risk in New Antidiabetic Therapies to Treat Type 2 Diabetes. 2008. www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm071627.pdf (Accessed 5 Feb 2019).

        • Schnell O.
        • Rydén L.
        • Standl E.
        • Ceriello A.
        • on behalf of the D&CVD EASD Study Group
        Current perspectives on cardiovascular outcome trials in diabetes.
        Cardiovasc Diabetol. 2016; 15: 139https://doi.org/10.1186/s12933-016-0456-8
        • Bailey C.J.
        • Marx N.
        Cardiovascular protection in type 2 diabetes: Insights from recent outcome trials.
        Diabet Obes Metab. 2019; 21: 3-14
        • Bailey C.J.
        Metformin: effects on micro and macrovascular complications in type 2 diabetes.
        Cardiovasc Drug Ther. 2008; 22: 215-224https://doi.org/10.1007/s10557-008-6092-0
        • Campbell I.W.
        • Howlett H.C.S.
        Metformin and the heart.
        in: Campbell I.W. Howlett H.C.S. Holman R.R. Bailey C.J. Metformin: 60years of clinical experience. Wiley –VCH, Weinheim2017: 45-58
        • Green J.B.
        • Bethel M.A.
        • Armstrong P.W.
        • for the TECOS Study Group
        • et al.
        Effect of sitagliptin on cardiovascular outcomes in type 2 diabetes.
        N Engl J Med. 2015; 373 (Epub 2015 Jun 8. Erratum in: N Engl J Med. 2015 Aug 6;373(6):586): 232-242https://doi.org/10.1056/NEJMoa1501352
        • White W.B.
        • Cannon C.P.
        • Heller S.R.
        • for the EXAMINE Investigators
        • et al.
        Alogliptin after acute coronary syndrome in patients with type 2 diabetes.
        N Engl J Med. 2013; 369 (Epub 2013 Sep 2): 1327-1335https://doi.org/10.1056/NEJMoa1305889
        • Scirica B.M.
        • Bhatt D.L.
        • Braunwald E.
        • et al.
        Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus.
        N Engl J Med. 2013; 369 (Epub 2013 Sep 2): 1317-1326https://doi.org/10.1056/NEJMoa1307684
      2. Boehringer Ingelheim press release, 10 June 2019. Full data from CAROLINA® outcome trial support long-term cardiovascular safety profile of Trajenta®. https://www.boehringer-ingelheim.com/press-release/CAROLINA-full-data.

        • Rosenstock J.
        • Perkovic V.
        • Johansen O.E.
        • Cooper M.E.
        • Kahn S.E.
        • Marx N.
        • et al.
        Effect of linagliptin vs placebo on major cardiovascular events in adults with type 2 diabetes and high cardiovascular and renal risk: The CARMELINA randomized clinical trial.
        JAMA. 2019; 321: 69-79
        • Pfeffer M.A.
        • Claggett B.
        • Diaz R.
        • for the ELIXA Investigators
        • et al.
        Lixisenatide in patients with type 2 diabetes and acute coronary syndrome.
        N Engl J Med. 2015; 373: 2247-2257https://doi.org/10.1016/j.ahj.2010.10.019
        • Marso S.P.
        • Daniels G.H.
        • Brown-Fransden K.
        • for the LEADER Steering Committee on behalf of the LEADER Trial Investigators
        • et al.
        Liraglutide and cardiovascular outcomes in type 2 diabetes.
        N Engl J Med. 2016; 375: 311-322https://doi.org/10.1056/NEJMoa1603827
        • Holman R.R.
        • Bethel M.A.
        • Mentz R.J.
        • for the EXSCEL Study Group
        • et al.
        Effects of once-weekly exenatide on cardiovascular outcomes in type 2 diabetes.
        N Engl J Med. 2017; 377: 1228-1239https://doi.org/10.1056/NEJMoa1612917
        • Gerstein H.C.
        • Colhoun H.M.
        • Dagenais G.R.
        • Diaz R.
        • Lakshmanan M.
        • Pais P.
        • et al.
        Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): a double-blind, randomised placebo-controlled trial.
        Lancet. 2019; (on-line first, full reference to be added at proof)
        • Marso S.P.
        • Bain S.C.
        • Consoli A.
        • for the SUSTAIN-6 investigators
        • et al.
        Semaglutide and cardiovascular outcomes in patients with type 2 diabetes.
        N Engl J Med. 2016; 375: 1834-1844https://doi.org/10.1056/NEJMoa1607141
        • Hernandez A.F.
        • Green J.B.
        • Janmohamed S.
        • D'Agostino R.B.
        • Granger C.B.
        • Jones N.P.
        • et al.
        Albiglutide and cardiovascular outcomes in patients with type 2 diabetes and cardiovascular disease (Harmony Outcomes): a double-blind, randomised placebo-controlled trial.
        Lancet. 2018; 392: 1519-1529https://doi.org/10.1016/S0140-6736(18)32261
        • Husain M.
        • Birkenfeld A.L.
        • Donsmark M.
        • Dungan K.
        • Eliaschewitz F.G.
        • Franco D.R.
        • et al.
        Oral semaglutide and cardiovascular outcomes in patients with type 2 diabetes.
        N Engl J Med. 2019; https://doi.org/10.1056/NEJMoa1901118
      3. Neal B, Perkovic V, Mahaffey KW, et al for the CANVAS Progam Collaborative Group. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med 2017;377:644–57. http://doi.org/10.1056/NEJMoa1611925.

        • Zinman B.
        • Wanner C.
        • Lachin J.M.
        • for the EMPA-REG OUTCOME Investigators
        • et al.
        Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes.
        N Engl J Med. 2015; 373: 2117-2128https://doi.org/10.1056/NEJMoa1504720
        • Wiviott S.D.
        • Raz I.
        • Bonaca M.P.
        • Mosenzon O.T.
        • Kato E.T.
        • Cahn A.
        • et al.
        Dapagliflozin and cardiovascular outcomes in type 2 diabetes.
        N Engl J Med. 2019; 380: 347-357https://doi.org/10.1056/NEJMoa1812389
        • Chen D.Y.
        • Li Y.R.
        • Mao C.T.
        • Tseng C.N.
        • Hsieh I.C.
        • Hung M.J.
        • et al.
        Cardiovascular outcomes of vildagliptin in patients with type 2 diabetes mellitus after acute coronary syndrome or acute ischemic stroke.
        J Diabet Investig. 2019; https://doi.org/10.1111/jdi.13078
        • Gantz I.
        • Chen M.
        • Suryawanshi S.
        • et al.
        A randomized, placebo-controlled study of the cardiovascular safety of the once-weekly DPP-4 inhibitor omarigliptin in patients with type 2 diabetes mellitus.
        Cardiovasc Diabetol. 2017; 16: 112https://doi.org/10.1186/s12933-017-0593-8
        • Cefalu W.T.
        • Kaul S.
        • Gerstein H.C.
        • Holman R.R.
        • Zinman B.
        • Skyler J.S.
        • et al.
        Cardiovascular outcomes trials in type 2 diabetes: where do we go from here? Reflections from a Diabetes Care Editors' Expert Forum.
        Diabet Care. 2018; 41: 14-31https://doi.org/10.2337/dci17-0057
        • Kosiborod M.
        • Cavender M.A.
        • Fu A.Z.
        • Wilding J.P.
        • Khunti K.
        • Holl R.W.
        • et al.
        Lower risk of heart failure and death in patients initiated on sodium-glucose cotransporter-2 inhibitors versus other glucose-lowering drugs. The CVD-REAL Study (Comparative Effectiveness of Cardiovascular Outcomes in New Users of Sodium-Glucose Cotransporter-2 Inhibitors).
        Circulation. 2017; 136: 249-259
        • Kosiborod M.
        • Lam C.S.P.
        • Kohsaka S.
        • Kim D.J.
        • Karasik A.
        • Shaw J.
        • et al.
        Cardiovascular events associated with SGLT-2 inhibitors versus other glucose-lowering drugs: The CVD-REAL 2 Study.
        J Am Coll Cardiol. 2018; 71: 2628-2639https://doi.org/10.1016/j.jacc.2018.03.009
        • Chatterjee S.
        • Davies M.J.
        • Khunti K.
        What have we learnt from “real world” data, observational studies and meta-analyses.
        Diabet Obes Metab. 2018; 20: 47-58
        • Bailey C.J.
        The current drug treatment landscape for diabetes and perspectives for the future.
        Clin Pharmacol Therapeutics. 2015; 98: 170-184
        • Dormandy J.A.
        • Charbonnel B.
        • Eckland D.J.
        • Erdmann E.
        • Massi-Benedetti M.
        • Moules I.K.
        • et al.
        Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial.
        Lancet. 2005; 366: 1279-1289
        • Kernan W.N.
        • Viscoli C.M.
        • Furie K.L.
        • Young L.H.
        • Inzucchi S.E.
        • Gorman M.
        • et al.
        Pioglitazone after ischemic stroke or transient ischemic attack.
        N Engl J Med. 2016; 374: 1321-1331
        • Lee M.
        • Saver J.L.
        • Liao H.W.
        • Lin C.H.
        • Oybiagele B.
        Pioglitazone for secondary stroke prevention: a systematic review and meta-analysis.
        Stroke. 2017; 48: 388-393
        • Vaccaro O.
        • Masulli M.
        • Nicolucci A.
        • Bonora E.
        • Del Prato S.
        • Maggioni A.P.
        • et al.
        Effects on the incidence of cardiovascular events of the addition of pioglitazone versus sulfonylureas in patients with type 2 diabetes inadequately controlled with metformin (TOSCA.IT): a randomised, multicentre trial.
        Lancet Diabet Endocrinol. 2017; 5: 887-897
        • Deacon C.F.
        Dipeptidyl peptidase-4 inhibitors in the treatment of type 2 diabetes: a comparative review.
        Diabet Obes Metab. 2011; 13: 7-18
        • Deacon C.F.
        • Lebovitz H.E.
        Comparative review of dipeptidyl peptidase-4 inhibitors and sulphonylureas.
        Diabet Obes Metab. 2016; 18: 333-347
        • McInnes G.
        • Evans M.
        • Del Prato S.
        • et al.
        Cardiovascular and heart failure safety profile of vildagliptin: a meta-analysis of 17 000 patients.
        Diabet Obes Metab. 2015; 17: 1085-1092
        • Schweizer A.
        • Dejager S.
        • Foley J.E.
        • et al.
        Assessing the cardiocerebrovascular safety of vildagliptin: meta-analysis of adjudicated events from a large Phase III type 2 diabetes population.
        Diabet Obes Metab. 2010; 12: 485-494
        • Williams R.
        • de Vries F.
        • Kothny W.
        • et al.
        Cardiovascular safety of vildagliptin in patients with type 2 diabetes: a European multi-database, non-interventional post-authorization safety study.
        Diabet Obes Metab. 2017; 19: 1473-1478https://doi.org/10.1111/dom.12951
        • McGuire D.K.
        • Alexander J.H.
        • Johansen O.E.
        • Perkovic V.
        • Rosenstock J.
        • Cooper M.E.
        • et al.
        Linagliptin effects on heart failure and related outcomes in individuals with type 2 diabetes mellitus at high cardiovascular and renal risk in CARMELINA.
        Circulation. 2019; 139: 351-361
        • Scheen A.J.
        • Delanaye P.
        Renal outcomes with dipeptidyl peptidase-4 inhibitors.
        Diabet Metab. 2018; 44: 101-111https://doi.org/10.1016/j.diabet.2017.07.011
        • Kanasaki K.
        The role of renal dipeptidyl peptidase-4 in kidney disease: renal effects of dipeptidyl peptidase-4 inhibitors with a focus on linagliptin.
        Clin Sci. 2018; 132: 489-507
        • Rehman M.B.
        • Tudrej B.V.
        • Soustre J.
        • Buisson M.
        • Archambault P.
        • Pouchain D.
        • et al.
        Efficacy and safety of DPP-4 inhibitors in patients with type 2 diabetes: Meta-analysis of placebo-controlled randomized clinical trials.
        Diabet Metab. 2017; 43: 48-58
        • Toh S.
        • Hampp C.
        • Reichman M.E.
        • Graham D.J.
        • Balakrishnan S.
        • Pucino F.
        • et al.
        Risk for hospitalized heart failure among new users of saxagliptin, sitagliptin, and other antihyperglycemic drugs: a retrospective cohort study.
        Ann Intern Med. 2016; 164: 705-714
        • Nauck M.A.
        • Meier J.J.
        Incretin hormones: their role in health and disease.
        Diabet Obes Metab. 2018; 20: 5-21
        • Drucker D.J.
        Mechanisms of action and therapeutic application of glucagon-like peptide-1.
        Cell Metab. 2018; 27: 740-756
        • Ahrén B.
        Glucagon-like peptide-1 receptor agonists for type 2 diabetes: A rational drug development.
        J Diabet Investig. 2019; 10: 196-201
        • Chon S.
        • Gautier J.F.
        An update on the effect of incretin-based therapies on β-cell function and mass.
        Diabet Metab J. 2016; 40: 99-114
        • Zummo F.P.
        • Cullen K.S.
        • Honkanen-Scott M.
        • Shaw J.A.M.
        • Lovat P.E.
        • Arden C.
        Glucagon-like peptide 1 protects pancreatic β-cells from death by increasing autophagic flux and restoring lysosomal function.
        Diabetes. 2017; 66: 1272-1285
        • Gough S.C.
        • Bode B.
        • Woo V.
        • et al.
        Efficacy and safety of a fixed-ratio combination of insulin degludec and liraglutide (IDegLira) compared with its components given alone: results of a phase 3, open-label, randomised, 26-week, treat-to-target trial in insulin-naive patients with type 2 diabetes.
        Lancet Diabet Endocrinol. 2014; 2: 885-893
        • Home P.
        • Riddle M.
        • Cefalu W.T.
        • Bailey C.J.
        • Bretzel R.G.
        • del Prato S.
        • et al.
        Insulin therapy in people with type 2 diabetes: opportunities and challenges?.
        Diabet Care. 2014; 37: 1499-1508
        • Drucker D.J.
        The ascending GLP-1 road from clinical safety to reduction of cardiovascular complications.
        Diabetes. 2018; 67: 1710-1719
        • Almutairi M.A.
        • Batran R.
        • Ussher J.R.
        Glucagon-like peptide-1 receptor action in the vasculature.
        Peptides. 2019; 111: 26-32
        • Nauck M.A.
        • Meier J.J.
        • Cavender M.A.
        • El Aziz M.A.
        • Drucker D.J.
        Cardiovascular actions and clinical outcomes with glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors.
        Circulation. 2017; 136: 849-870
        • Mann J.F.E.
        • Ørsted D.D.
        • Brown-Frandsen K.
        • Marso S.P.
        • Poulter N.R.
        • Rasmussen S.
        • et al.
        Liraglutide and renal outcomes in type 2 diabetes.
        N Engl J Med. 2017; 377: 839-848
        • von Scholten B.J.
        • Persson F.
        • Rosenlund S.
        • et al.
        Effects of liraglutide on cardiovascular risk biomarkers in patients with type 2 diabetes and albuminuria: a sub-analysis of a randomized, placebo-controlled, double-blind, crossover trial.
        Diabet Obes Metab. 2017; 19: 901-905
        • Thomas M.C.
        The potential and pitfalls of GLP-1 receptor agonists for renal protection in type 2 diabetes.
        Diabet Metab. 2017; 43 (2S20–2S27)
        • Muskiet M.H.A.
        • Tonneijck L.
        • Smits M.M.
        • van Baar M.J.B.
        • Kramer M.H.H.
        • Hoorn E.J.
        • et al.
        GLP-1 and the kidney: from physiology to pharmacology and outcomes in diabetes.
        Nat Rev Nephrol. 2017; 13: 605-628
        • Zhao C.
        • Liang J.
        • Yang Y.
        • Yu M.
        • Qu X.
        The impact of glucagon-like peptide-1 on bone metabolism and its possible mechanisms.
        Front Endocrinol (Lausanne). 2017; 8: 98https://doi.org/10.3389/fendo.2017.00098
        • Batista A.F.
        • Bodart-Santos V.
        • De Felice F.G.
        • Ferreira S.T.
        Neuroprotective actions of glucagon-like peptide-1 (glp-1) analogues in Alzheimer's and Parkinson's diseases.
        CNS Drugs. 2019; 33: 209-223https://doi.org/10.1007/s40263-018-0593-6
        • Tahrani A.A.
        • Barnett A.H.
        • Bailey C.J.
        SGLT inhibitors in management of diabetes.
        Lancet Diabet Endocrinol. 2013; 1: 140-151
        • Kato E.T.
        • Silverman M.G.
        • Mosenzon O.
        • Zelniker T.A.
        • Cahn A.
        • Furtado R.H.M.
        • et al.
        Effect of dapagliflozin on heart failure and mortality in type 2 diabetes mellitus.
        Circulation. 2019; 139: 2528-2536
        • Zelniker T.A.
        • Wiviott S.D.
        • Raz I.
        • et al.
        SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials.
        Lancet. 2019; 393: 31-39
        • Zelniker T.A.
        • Wiviott S.D.
        • Raz I.
        • Im K.
        • Goodrich E.L.
        • Furtado R.H.M.
        • et al.
        Comparison of the effects of glucagon-like peptide receptor agonists and sodium-glucose cotransporter 2 inhibitors for prevention of major adverse cardiovascular and renal outcomes in type 2 diabetes mellitus.
        Circulation. 2019; 139: 2022-2031
        • Lim V.G.
        • Bell R.M.
        • Arjun S.
        • Kolatsi-Joannou M.
        • Long D.A.
        • Yellon D.M.
        SGLT2 Inhibitor, canagliflozin, attenuates myocardial infarction in the diabetic and nondiabetic heart.
        JACC: Basic Translat Sci. 2019; 4 (pages to be added at proof)
        • Toyama T.
        • Neuen B.L.
        • Jun M.
        • Ohkuma T.
        • Neal B.
        • Jardine M.J.
        • et al.
        Effect of SGLT2 inhibitors on cardiovascular, renal and safety outcomes in patients with type 2 diabetes mellitus and chronic kidney disease: A systematic review and meta-analysis.
        Diabet Obes Metab. 2019; 21: 1237-1250
        • Mosenzon O.
        • Wiviott S.D.
        • Cahn A.
        • Rozenberg A.
        • Yanuv I.
        • Goodrich E.L.
        • et al.
        Effects of dapagliflozin on development and progression of kidney disease in patients with type 2 diabetes: an analysis from the DECLARE-TIMI 58 randomised trial.
        Lancet Diabet Endocrinol. 2019; https://doi.org/10.1016/S2213-8587(19)30180-9
        • Cherney D.Z.I.
        • Perkins B.A.
        • Soleymanlou N.
        • Maione M.
        • Lai V.
        • Lee A.
        • et al.
        Renal hemodynamic effect of sodium-glucose cotransporter 2 inhibition in patients with type 1 diabetes mellitus.
        Circulation. 2014; 129: 587-597
        • Perkovic V.
        • Jardine M.J.
        • Neal B.
        • Bompoint S.
        • Heerspink H.J.L.
        • Charytan D.M.
        • et al.
        Canagliflozin and renal outcomes in type 2 diabetes and nephropathy.
        N Engl J Med. 2019; 13: 2295-2306https://doi.org/10.1056/NEJMoa1811744
        • Pollock C.
        • Stefánsson B.
        • Reyner D.
        • Rossing P.
        • Sjöström C.D.
        • Wheeler D.C.
        • et al.
        Albuminuria-lowering effect of dapagliflozin alone and in combination with saxagliptin and effect of dapagliflozin and saxagliptin on glycaemic control in patients with type 2 diabetes and chronic kidney disease (DELIGHT): a randomised, double-blind, placebo-controlled trial.
        Lancet Diabet Endocrinol. 2019; 7: 429-441
        • Sano M.
        A new class of drugs for heart failure: SGLT2 inhibitors reduce sympathetic overactivity.
        J Cardiol. 2018; 71: 471-476
        • Scheen A.J.
        An update on the safety of SGLT2 inhibitors.
        Expert Opin Drug Saf. 2019; 18: 295-311
        • Ueda P.
        • Svanström H.
        • Melbye M.
        • Eliasson B.
        • Svensson A.M.
        • Franzén S.
        • et al.
        Sodium glucose cotransporter 2 inhibitors and risk of serious adverse events: nationwide register based cohort study.
        BMJ. 2018; 363k4365
        • Danne T.
        • Garg S.
        • Peters A.L.
        • Buse J.B.
        • Mathieu C.
        • Pettus J.H.
        • et al.
        International consensus on risk management of diabetic ketoacidosis in patients with type 1 diabetes treated with sodium-glucose cotransporter (SGLT) inhibitors.
        Diabet Care. 2019; 42: 1147-1154https://doi.org/10.2337/dc18-2316
        • DeFronzo R.A.
        • Eldor R.
        • Abdul-Ghani M.
        Pathophysiologic approach to therapy in patients with newly diagnosed type 2 diabetes.
        Diabet Care. 2013; 36: S127-S138
        • Kahn S.E.
        • Cooper M.E.
        • Del Prato S.
        Pathophysiology and treatment of type 2 diabetes: perspectives on the past, present, and future.
        Lancet. 2014; 383: 1068-1083
        • Abdul-Ghani M.A.
        • Puckett C.
        • Triplitt C.
        • et al.
        Initial combination therapy with metformin, pioglitazone and exenatide is more effective than sequential add-on therapy in subjects with new-onset diabetes. Results from the efficacy and durability of initial combination therapy for type 2 diabetes (EDICT): a randomized trial.
        Diabet Obes Metab. 2015; 17: 268-275
        • Vijayakumar T.M.
        • Jayram J.
        • Cheekireddy V.M.
        • Himaja D.
        • Teja Y.D.
        • Narayanasamy D.
        • et al.
        and bioavailability of fixed-dose combinations in type 2 diabetes mellitus: a systematic updated review.
        Curr Ther Res Clin Exp. 2017; 84: 4-9
        • Bianchi C.
        • Daniele G.
        • Dardano A.
        • Miccoli R.
        • Del Prato S.
        Early combination therapy with oral glucose-lowering agents in type 2 diabetes.
        Drugs. 2017; 77: 247-264
        • de Pablos-Velasco P.
        • Parhofer K.G.
        • Bradley C.
        • Eschwege E.
        • Gonder-Frederick L.
        • et al.
        Current level of glycaemic control and its associated factors in patients with type 2 diabetes across Europe: data from the PANORAMA study.
        Clin Endocrinol. 2014; 85: 47-56
        • Khunti K.
        • Nikolajsen A.
        • Thorsted B.L.
        • Andersen M.
        • Davies M.J.
        • Paul S.K.
        Clinical inertia with regard to intensifying therapy in people with type 2 diabetes treated with basal insulin.
        Diabet Obes Metab. 2016; 18: 401-409
      4. Mullin R. Cost to develop new pharmaceutical drug now exceeds $2.5B. Scientific American, https://www.scientificamerican.com/article/cost-to-develop-new-pharmaceutical-drug-now-exceeds-2-5b/?redirect=1.

        • DiMasi J.A.
        • Grabowski H.G.
        • Hansen R.W.
        Innovation in the pharmaceutical industry: New estimates of R&D costs.
        J Health Econ. 2016; 47: 20-33
        • Bailey C.J.
        • Tahrani A.A.
        • Barnett A.H.
        Future glucose-lowering drugs for type 2 diabetes.
        Lancet Diabet Endocrinol. 2016; 4: 350-359
        • Bailey C.J.
        • Day C.
        Treatment of type 2 diabetes: future approaches.
        Brit Med Bull. 2018; 126: 123-137
        • Bailey C.J.
        Glucose-lowering therapies in type 2 diabetes: Opportunities and challenges for peptides.
        Peptides. 2018; 100: 9-17
        • Frias J.P.
        • Nauck M.A.
        • Van J.
        • Kutner M.E.
        • Cui X.
        • Benson C.
        • et al.
        Efficacy and safety of LY3298176, a novel dual GIP and GLP-1 receptor agonist, in patients with type 2 diabetes: a randomised, placebo-controlled and active comparator-controlled phase 2 trial.
        Lancet. 2018; 392: 2180-2193
        • Ambery P.
        • Parker V.E.
        • Stumvoll M.
        • Posch M.G.
        • Heise T.
        • Plum-Moerschel L.
        • et al.
        MEDI0382, a GLP-1 and glucagon receptor dual agonist, in obese or overweight patients with type 2 diabetes: a randomised, controlled, double-blind, ascending dose and phase 2a study.
        Lancet. 2018; 391: 2607-2618
        • McGuire D.K.
        • Marx N.
        • Johansen O.E.
        • Inzucchi S.E.
        • Rosenstock J.
        • George J.T.
        FDA guidance on antihyperglyacemic therapies for type 2 diabetes: one decade later.
        Diabet Obesity Metab. 2019; 21: 1073-1078
        • Blonde L.
        • Khunti K.
        • Harris S.B.
        • Meizinger C.
        • Skolnik N.S.
        Interpretation and impact of real-world clinical data for the practicing clinician.
        Adv Ther. 2018; 35: 1763-1774