Advertisement

Does control of glycemia regulate immunological parameters in insulin-treated persons with type 1 diabetes?

  • Magloire Pandoua Nekoua
    Affiliations
    Université d’Abomey-Calavi, Faculté des Sciences et Techniques, Institut des Sciences Biomédicales Appliquées (ISBA), Laboratoire de Biologie et Physiologie Cellulaires, 01 BP 526 Cotonou, Benin

    Université de Lille, Faculté de Médecine, CHU de Lille, Laboratoire de Virologie EA3610, F-59000 Lille, France
    Search for articles by this author
  • Rufine Fachinan
    Affiliations
    Université d’Abomey-Calavi, Faculté des Sciences et Techniques, Institut des Sciences Biomédicales Appliquées (ISBA), Laboratoire de Biologie et Physiologie Cellulaires, 01 BP 526 Cotonou, Benin
    Search for articles by this author
  • Adnette Fagninou
    Affiliations
    Université d’Abomey-Calavi, Faculté des Sciences et Techniques, Institut des Sciences Biomédicales Appliquées (ISBA), Laboratoire de Biologie et Physiologie Cellulaires, 01 BP 526 Cotonou, Benin
    Search for articles by this author
  • Enagnon Kazali Alidjinou
    Affiliations
    Université de Lille, Faculté de Médecine, CHU de Lille, Laboratoire de Virologie EA3610, F-59000 Lille, France
    Search for articles by this author
  • Kabirou Moutairou
    Affiliations
    Université d’Abomey-Calavi, Faculté des Sciences et Techniques, Institut des Sciences Biomédicales Appliquées (ISBA), Laboratoire de Biologie et Physiologie Cellulaires, 01 BP 526 Cotonou, Benin
    Search for articles by this author
  • Didier Hober
    Affiliations
    Université de Lille, Faculté de Médecine, CHU de Lille, Laboratoire de Virologie EA3610, F-59000 Lille, France
    Search for articles by this author
  • Akadiri Yessoufou
    Correspondence
    Corresponding author.
    Affiliations
    Université d’Abomey-Calavi, Faculté des Sciences et Techniques, Institut des Sciences Biomédicales Appliquées (ISBA), Laboratoire de Biologie et Physiologie Cellulaires, 01 BP 526 Cotonou, Benin
    Search for articles by this author
Published:September 24, 2019DOI:https://doi.org/10.1016/j.diabres.2019.107868

      Abstract

      Aims

      We investigated the relationships between control of glycemia and the frequencies of immune cell subpopulations and also the profile of circulating T cell cytokines in insulin-treated persons with type 1 diabetes (T1D).

      Methods

      Clinical data and blood samples were collected from two groups of persons with T1D exhibiting either adequate (AGC) or inadequate glycemic control (IGC), as well as from individuals without diabetes considered as a control group. Serum cytokine levels and immune cell subpopulation frequencies were determined.

      Results

      Irrespective of their capacity to control glycemia, the percentages of effector CD4+ T-cells and CD19+ B-cells were higher in persons with T1D than in controls, whilst monocytes were significantly more frequent in those with IGC than in controls. The overall frequencies of CD4+ T-cells, CD8+ T-cells and Foxp3+CD4+CD25+ regulatory T-cells did not differ between the three groups. The serum levels of IL-2 and IFN-γ were lower in both groups with T1D compared to controls, whilst the level of IL-4 did not differ. The level of IL-10 was significantly lower in those with AGC compared to controls.

      Conclusion

      Our study shows that insulin treatment is associated with a Th2-biased systemic immune phenotype in persons with T1D, reflected by a high proportion of effector CD4+ T cells and CD19+ B cells and a down-regulation of Th1-type serum cytokines.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Diabetes Research and Clinical Practice
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Castano L.
        • Eisenbarth G.S.
        Type-I diabetes: a chronic autoimmune disease of human, mouse, and rat.
        Annu Rev Immunol. 1990; 8: 647-679https://doi.org/10.1146/annurev.iy.08.040190.003243
        • Hober D.
        • Sauter P.
        Pathogenesis of type 1 diabetes mellitus: Interplay between enterovirus and host.
        Nat Rev Endocrinol. 2010; 6: 279-289https://doi.org/10.1038/nrendo.2010.27
      1. Boitard C. Pancreatic islet autoimmunity. Press Medicale 2012;Dec;41(12). https://doi.org/10.1016/j.lpm.2012.10.003.

        • Jaberi-Douraki M.
        • Pietropaolo M.
        • Khadra A.
        Continuum model of T-cell avidity: understanding autoreactive and regulatory T-cell responses in type 1 diabetes.
        J Theor Biol. 2015; https://doi.org/10.1016/j.jtbi.2015.07.032
        • Cieślak M.
        • Wojtczak A.
        • Cieślak M.
        Role of pro-inflammatory cytokines of pancreatic islets and prospects of elaboration of new methods for the diabetes treatment.
        Acta Biochim Pol. 2015; https://doi.org/10.18388/abp.2014_853
        • Padgett L.E.
        • Broniowska K.A.
        • Hansen P.A.
        • Corbett J.A.
        • Tse H.M.
        The role of reactive oxygen species and proinflammatory cytokines in type 1 diabetes pathogenesis.
        Ann NY Acad Sci. 2013; 1281: 16-35https://doi.org/10.1111/j.1749-6632.2012.06826.x
        • Delamaire M.
        • Maugendre D.
        • Moreno M.
        • Le Goff M.C.
        • Allannic H.
        • Genetet B.
        Impaired leucocyte functions in diabetic patients.
        Diabet Med. 1997; https://doi.org/10.1002/(SICI)1096-9136(199701)14:1<29::AID-DIA300>3.0.CO;2-V
        • Shah B.
        • Hux J.
        Quantifying the risk of infectious diseases for people with diabetes.
        Diabetes Care. 2003;
        • Shanmugam N.
        • Reddy M.A.
        • Guha M.
        • Natarajan R.
        High glucose-induced expression of proinflammatory cytokine and chemokine genes in monocytic cells.
        Diabetes. 2003; https://doi.org/10.2337/diabetes.52.5.1256
        • Leonidou L.
        • Mouzaki A.
        • Michalaki M.
        • DeLastic A.L.
        • Kyriazopoulou V.
        • Bassaris H.P.
        • et al.
        Cytokine production and hospital mortality in patients with sepsis-induced stress hyperglycemia.
        J Infect. 2007; https://doi.org/10.1016/j.jinf.2007.05.177
        • Sun C.
        • Sun L.
        • Ma H.
        • Peng J.
        • Zhen Y.
        • Duan K.
        • et al.
        The phenotype and functional alterations of macrophages in mice with hyperglycemia for long term.
        J Cell Physiol. 2012; https://doi.org/10.1002/jcp.22891
        • Gonzalez Y.
        • Herrera M.T.
        • Soldevila G.
        • Garcia-Garcia L.
        • Perez-Armendariz E.M.
        • Fabian G.
        • et al.
        High glucose concentrations induce TNF-alpha production through the down-regulation of CD33 in primary human monocytes.
        BMC Immunol. 2012; https://doi.org/10.1186/1471-2172-13-19
      2. Brownlee MB. Mechanism of hyperglycemic damage in diabetes. In: Lippincott Williams & Wilkins, editor. Atlas of Diabetes. 2nd ed, Philadelphia; 2002. p. 125–37.

        • Stentz F.B.
        • Umpierrez G.E.
        • Cuervo R.
        • Kitabchi A.E.
        Proinflammatory cytokines, markers of cardiovascular risks, oxidative stress, and lipid peroxidation in patients with hyperglycemic crises.
        Diabetes. 2004; (doi:53/8/2079 [pii])
        • Control T.D.
        • Trial C.
        The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. The Diabetes Control and Complications Trial Research Group.
        N Engl J Med. 1993; https://doi.org/10.1056/NEJM199309303291401
        • Fullerton B.
        • Jeitler K.
        • Seitz M.
        • Horvath K.
        • Berghold A.
        • Siebenhofer A.
        Intensive glucose control versus conventional glucose control for type 1 diabetes mellitus.
        Cochrane Database Syst Rev. 2014; https://doi.org/10.1002/14651858.CD009122.pub2
        • Dandona P.
        • Aljada A.
        • Mohanty P.
        • Ghanim H.
        • Hamouda W.
        • Assian E.
        • et al.
        Insulin inhibits intranuclear nuclear factor κB and stimulates IκB in mononuclear cells in obese subjects: Evidence for an anti-inflammatory effect?.
        J Clin Endocrinol Metab. 2001; 86: 3257-3265https://doi.org/10.1210/jc.86.7.3257
        • Jeschke M.G.
        • Klein D.
        • Herndon D.N.
        Insulin treatment improves the systemic inflammatory reaction to severe trauma.
        Ann Surg. 2004; 239: 553-560https://doi.org/10.1097/01.sla.0000118569.10289.ad
        • Jeschke M.G.
        • Klein D.
        • Bolder U.
        • Einspanier R.
        Insulin attenuates the systemic inflammatory response in endotoxemic rats.
        Endocrinology. 2004; 145: 4084-4093https://doi.org/10.1210/en.2004-0592
        • Deng H.
        • Chai J.
        The effects and mechanisms of insulin on systemic inflammatory response and immune cells in severe trauma, burn injury, and sepsis.
        Int Immunopharmacol. 2009; https://doi.org/10.1016/j.intimp.2009.07.009
      3. Foss-Freitas MC, Foss NT, Donadi EA, Foss MC. Effect of metabolic control on the in vitro proliferation of peripheral blood mononuclear cells in type 1 and type 2 diabetic patients. Sao Paulo Med J; 2006. doi:S1516-31802006000400009 [pii].

        • Xiu F.
        • Stanojcic M.
        • Diao L.
        • Jeschke M.G.
        Stress hyperglycemia, insulin treatment, and innate immune cells.
        Int J Endocrinol. 2014; https://doi.org/10.1155/2014/486403
        • American Diabetes Association
        Standards of medical care in diabetes-2018 abridged for primary care providers.
        Clin Diab. 2018; 36: 14-37https://doi.org/10.2337/cd17-0119
        • Lind M.
        • Svensson A.M.
        • Kosiborod M.
        • Gudbjornsdottir S.
        • Pivodic A.
        • Wedel H.
        • et al.
        Glycemic control and excess mortality in type 1 diabetes.
        N Engl J Med. 2014; https://doi.org/10.1056/NEJMoa1408214
        • Nekoua M.P.
        • Yessoufou A.
        • Alidjinou E.K.
        • Badia-Boungou F.
        • Moutairou K.
        • Sane F.
        • et al.
        Salivary anti-coxsackievirus-B4 neutralizing activity and pattern of immune parameters in patients with type 1 diabetes: a pilot study.
        Acta Diabetol. 2018; : 1-8https://doi.org/10.1007/s00592-018-1158-3
        • Nekoua M.P.
        • Fachinan R.
        • Atchamou A.K.
        • Nouatin O.
        • Amoussou-Guenou D.
        • Amoussou-Guenou M.K.
        • et al.
        Modulation of immune cells and Th1/Th2 cytokines in insulin-treated type 2 diabetes mellitus.
        Afr Heal Sci. 2016; 16: 712-724https://doi.org/10.4314/ahs.v16i3.11
        • Rosenbauer J.
        • Dost A.
        • Karges B.
        • Hungele A.
        • Stahl A.
        • Bächle C.
        • et al.
        Improved metabolic control in children and adolescents with type 1 diabetes: a trend analysis using prospective multicenter data from Germany and Austria.
        Diabetes Care. 2012; https://doi.org/10.2337/dc11-0993
        • Foss-Freitas M.C.
        • Foss N.T.
        • Donadi E.A.
        • Foss M.C.
        Effect of metabolic control on interferon-gamma and interleukin-10 production by peripheral blood mononuclear cells from type 1 and type 2 diabetic patients.
        Braz J Med Biol Res. 2007; (S0100-879X2007000500010 [pii])
        • Foss-Freitas M.C.
        • Foss N.T.
        • Donadi E.A.
        • Foss M.C.
        Effect of the glycemic control on intracellular cytokine production from peripheral blood mononuclear cells of type 1 and type 2 diabetic patients.
        Diabetes Res Clin Pract. 2008; 82: 329-334
        • Foss-Freitas M.C.
        • Foss N.T.
        • Rassi D.M.
        • Donadi E.A.
        • Foss M.C.
        Evaluation of cytokine production from peripheral blood mononuclear cells of Type 1 diabetic patients.
        Ann NY Acad Sci. 2008; https://doi.org/10.1196/annals.1447.053
        • Viardot A.
        • Grey S.T.
        • Mackay F.
        • Chisholm D.
        Potential antiinflammatory role of insulin via the preferential polarization of effector T cells toward a T helper 2 phenotype.
        Endocrinology. 2007; https://doi.org/10.1210/en.2006-0686
        • Menart-Houtermans B.
        • Rütter R.
        • Nowotny B.
        • Rosenbauer J.
        • Koliaki C.
        • Kahl S.
        • et al.
        Leukocyte profiles differ between type 1 and type 2 diabetes and are associated with metabolic phenotypes: results from the German Diabetes Study (GDS).
        Diabetes Care. 2014; https://doi.org/10.2337/dc14-0316
        • Aghili B.
        • Amirzargar A.A.
        • Rajab A.
        • Rabbani A.
        • Sotoudeh A.
        • Assadiasl S.
        • et al.
        Altered suppressor function of regulatory T cells in Type 1 diabetes.
        Iran J Immunol. 2015;
        • Putnam A.L.
        • Vendrame F.
        • Dotta F.
        • Gottlieb P.A.
        CD4(+)CD25(high) regulatory T cells in human autoimmune diabetes.
        J Autoimmun. 2005; 24 (S0896-8411(04)00131-3 [pii]\r10.1016/j.jaut.2004.11.004): 55-62
        • Brusko T.
        • Wasserfall C.
        • McGrail K.
        • Schatz R.
        • Viener H.L.
        • Schatz D.
        • et al.
        No alterations in the frequency of FOXP3+ regulatory T-cells in Type 1 diabetes.
        Diabetes. 2007; 56: 604-612https://doi.org/10.2337/db06-1248
        • Hamari S.
        • Kirveskoski T.
        • Glumoff V.
        • Kulmala P.
        • Simell O.
        • Knip M.
        • et al.
        Analyses of regulatory CD4 + CD25 + FOXP3 + T cells and observations from peripheral T cell subpopulation markers during the development of type 1 diabetes in children.
        Scand J Immunol. 2016; 83: 279-287https://doi.org/10.1111/sji.12418
        • Lindley S.
        • Dayan C.M.
        • Bishop A.
        • Roep B.O.
        • Peatman M.
        • Tree T.I.M.
        Defective suppressor function in CD4+CD25+ T-cells from patients with type 1 diabetes.
        Diabetes. 2005; 54: 92-99https://doi.org/10.2337/diabetes.54.1.92
        • Brusko T.M.
        • Wasserfall C.H.
        • Clare-Salzler M.J.
        • Schatz D.A.
        • Atkinson M.A.
        Functional defects and the influence of age on the frequency of CD4 +CD25+ T-cells in type 1 diabetes.
        Diabetes. 2005; 54: 1407-1414https://doi.org/10.2337/diabetes.54.5.1407
        • Walker L.S.K.
        • von Herrath M.
        CD4 T cell differentiation in type 1 diabetes.
        Clin Exp Immunol. 2016; 183: 16-29https://doi.org/10.1111/cei.12672
        • Halminen M.
        • Simell O.
        • Knip M.
        • Ilonen J.
        Cytokine expression in unstimulated PBMC of children with type 1 diabetes and subjects positive for diabetes-associated autoantibodies.
        Scand J Immunol. 2001; 53: 510-513https://doi.org/10.1046/j.1365-3083.2001.00904.x
        • Kukreja A.
        • Cost G.
        • Marker J.
        • Zhang C.
        • Sun Z.
        • Lin-Su K.
        • et al.
        Multiple immuno-regulatory defects in type-1 diabetes.
        J Clin Invest. 2002; 109: 131-140https://doi.org/10.1172/JCI200213605
        • Karlsson Faresjö M.G.E.
        • Ernerudh J.
        • Ludvigsson J.
        Cytokine profile in children during the first 3 months after the diagnosis of type 1 diabetes.
        Scand J Immunol. 2004; 59: 517-526https://doi.org/10.1111/j.0300-9475.2004.01420.x
        • Chatzigeorgiou A.
        • Harokopos V.
        • Mylona-Karagianni C.
        • Tsouvalas E.
        • Aidinis V.
        • Kamper E.
        The pattern of inflammatory/anti-inflammatory cytokines and chemokines in type 1 diabetic patients over time.
        Ann Med. 2010; 42: 426-438https://doi.org/10.3109/07853890.2010.495951
        • Dandona P.
        • Aljada A.
        • Mohanty P.
        The anti-inflammatory and potential anti-atherogenic effect of insulin: a new paradigm.
        Diabetologia. 2002; https://doi.org/10.1007/s00125-001-0766-5
        • Wan Y.Y.
        • Flavell R.A.
        How diverse-CD4 effector T cells and their functions.
        J Mol Cell Biol. 2009; 1: 20-36https://doi.org/10.1093/jmcb/mjp001
        • Zhu J.
        • Yamane H.
        • Paul W.
        Differentiation of effector CD4 T cell populations.
        Annu Rev Immunol. 2010; 28: 445-489https://doi.org/10.1146/annurev-immunol-030409-101212.Differentiation
        • Ryba-Stanisławowska M.
        • Myśliwska J.
        • Juhas U.
        • Myśliwiec M.
        Elevated levels of peripheral blood CD14(bright) CD16+ and CD14(dim) CD16+ monocytes may contribute to the development of retinopathy in patients with juvenile onset type 1 diabetes.
        APMIS. 2015; 123: 793-799https://doi.org/10.1111/apm.12419
        • Leon-Cabrera S.
        • Arana-Lechuga Y.
        • Esqueda-León E.
        • Terán-Pérez G.
        • Gonzalez-Chavez A.
        • Escobedo G.
        • et al.
        Reduced systemic levels of IL-10 are associated with the severity of obstructive sleep apnea and insulin resistance in morbidly obese humans.
        Mediators Inflamm. 2015; https://doi.org/10.1155/2015/493409
        • Geerlings S.E.
        • Hoepelman A.I.M.
        Immune dysfunction in patients with diabetes mellitus (DM).
        FEMS Immunol Med Microbiol. 1999; 26: 259-265https://doi.org/10.1016/S0928-8244(99)00142-X