Advertisement

Efficacy of low-level light therapy for treatment of diabetic foot ulcer: A systematic review and meta-analysis of randomized controlled trials

      Highlights

      • Management of DFU remains a major therapeutic challenge throughout the world.
      • LLLT is effective in promoting granulation, reducing ulcer area and improving healing rate.
      • LLLT is a cost-effective for DFUs, especially for Wagner ulcer classification I∼II.

      Abstract

      Aims

      The goal of this systematic review and meta-analysis based on seven Randomized control trials (RCTs) is to examine whether Low-level light therapy (LLLT) is effective at healing diabetic foot ulcer (DFU) and to provide evidence-based recommendations and clinical guidelines for the future clinical treatment of DFUs.

      Methods

      Medline, Embase, Scopus, Cochrane Library, and Web of Science databases were searched for studies published up to June 30, 2017, without language or data restrictions. RCTs that investigated the use of LLLT for DFU treatment were included. Standard methods of meta-analysis were performed to evaluate outcomes of LLLT on the healing of DFU.

      Results

      Seven RCTs involving 194 participants were eligible for this systematic review and meta-analysis. The results of meta-analysis showed that LLLT has emerged as a potential noninvasive treatment for DFUs, as LLLT was found to effectively reduce the ulcer area [weighted mean difference (WMD) 34.18, 95% confidence intervals (CI) 19.38–48.99, P < 0.00001], improve the complete healing rate [odds ratio (OR) 6.72, 95% CI 1.99–22.64, P = 0.002]. Qualitative analysis of the included RCTs found that LLLT also played a role in the treatment of DFUs through promoting rapid granulation formation and shortening ulcer closure time, as well as alleviating foot ulcer pain. None of the treatment-related adverse event was reported.

      Conclusions

      LLLT was recognized as a potential method in the comprehensive treatment of DFUs. Further well designed and high-quality studies are required to confirm the role of LLLT in the management of DFUs.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Diabetes Research and Clinical Practice
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Boulton A.J.
        • Vileikyte L.
        • Ragnarson-Tennvall G.
        • Apelqvist J.
        The global burden of diabetic foot disease.
        Lancet. 2005; 366: 1719-1724
        • Kerr M.
        • Rayman G.
        • Jeffcoate W.J.
        Cost of diabetic foot disease to the National Health Service in England.
        Diabet Med. 2014; 31: 1498-1504
        • Jupiter D.C.
        • Thorud J.C.
        • Buckley C.J.
        • Shibuya N.
        The impact of foot ulceration and amputation on mortality in diabetic patients. I: from ulceration to death, a systematic review.
        Int Wound J. 2016; 13: 892-903
        • Martins-Mendes D.
        • Monteiro-Soares M.
        • Boyko E.J.
        • Ribeiro M.
        • Barata P.
        • Lima J.
        • et al.
        The independent contribution of diabetic foot ulcer on lower extremity amputation and mortality risk.
        J Diabetes Complic. 2014; 28: 632-638
        • Zhang P.
        • Lu J.
        • Jing Y.
        • Tang S.
        • Zhu D.
        • Bi Y.
        Global epidemiology of diabetic foot ulceration: a systematic review and meta-analysis dagger.
        Ann Med. 2017; 49: 106-116
        • Fortington L.V.
        • Geertzen J.H.
        • van Netten J.J.
        • Postema K.
        • Rommers G.M.
        • Dijkstra P.U.
        Short and long term mortality rates after a lower limb amputation.
        Eur J Vasc Endovasc Surg. 2013; 46: 124-131
        • Mast B.A.
        • Schultz G.S.
        Interactions of cytokines, growth factors, and proteases in acute and chronic wounds.
        Wound Repair Regen. 1996; 4: 411-420
        • Amery C.M.
        Growth factors and the management of the diabetic foot.
        Diabet Med. 2005; 22: 12-14
        • Tsang M.W.
        • Wong W.K.
        • Hung C.S.
        • Lai K.M.
        • Tang W.
        • Cheung E.Y.
        • et al.
        Human epidermal growth factor enhances healing of diabetic foot ulcers.
        Diabetes Care. 2003; 26: 1856-1861
        • Baker L.L.
        • Chambers R.
        • DeMuth S.K.
        • Villar F.
        Effects of electrical stimulation on wound healing in patients with diabetic ulcers.
        Diabetes Care. 1997; 20: 405-412
        • Kessler L.
        • Bilbault P.
        • Ortega F.
        • Grasso C.
        • Passemard R.
        • Stephan D.
        • et al.
        Hyperbaric oxygenation accelerates the healing rate of nonischemic chronic diabetic foot ulcers: a prospective randomized study.
        Diabetes Care. 2003; 26: 2378-2382
        • Hawkins D.
        • Houreld N.
        • Abrahamse H.
        Low level laser therapy (LLLT) as an effective therapeutic modality for delayed wound healing.
        Ann NY Acad Sci. 2005; 1056: 486-493
        • Mester E.
        • Korenyi-Both A.
        • Spiry T.
        • Tisza S.
        The effect of laser irradiation on the regeneration of muscle fibers (preliminary report).
        Z Exp Chir. 1975; 8: 258-262
        • Mester E.
        • Spiry T.
        • Szende B.
        • Tota J.G.
        Effect of laser rays on wound healing.
        Am J Surg. 1971; 122: 532-535
        • Kajagar B.M.
        • Godhi A.S.
        • Pandit A.
        • Khatri S.
        Efficacy of low level laser therapy on wound healing in patients with chronic diabetic foot ulcers-a randomised control trial.
        Indian J Surg. 2012; 74: 359-363
        • Nussbaum E.L.
        • Lilge L.
        • Mazzulli T.
        Effects of 630-, 660-, 810-, and 905-nm laser irradiation delivering radiant exposure of 1–50 J/cm2 on three species of bacteria in vitro.
        J Clin Laser Med Surg. 2002; 20: 325-333
        • Posten W.
        • Wrone D.A.
        • Dover J.S.
        • Arndt K.A.
        • Silapunt S.
        • Alam M.
        Low-level laser therapy for wound healing: mechanism and efficacy.
        Dermatol Surg. 2005; 31: 334-340
        • Schindl A.
        • Merwald H.
        • Schindl L.
        • Kaun C.
        • Wojta J.
        Direct stimulatory effect of low-intensity 670 nm laser irradiation on human endothelial cell proliferation.
        Br J Dermatol. 2003; 148: 334-336
        • Al-Watban F.A.
        • Zhang X.Y.
        • Andres B.L.
        Low-level laser therapy enhances wound healing in diabetic rats: a comparison of different lasers.
        Photomed Laser Surg. 2007; 25: 72-77
        • Gungormus M.
        • Akyol U.K.
        Effect of biostimulation on wound healing in diabetic rats.
        Photomed Laser Surg. 2009; 27: 607-610
        • Moher D.
        • Liberati A.
        • Tetzlaff J.
        • Altman D.G.
        • Group P
        Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement.
        PLoS Med. 2009; 6: e1000097
        • Higgins J.P.
        • Altman D.G.
        • Gotzsche P.C.
        • Juni P.
        • Moher D.
        • Oxman A.D.
        • et al.
        The Cochrane Collaboration's tool for assessing risk of bias in randomised trials.
        BMJ. 2011; 343: d5928
        • Lau J.
        • Ioannidis J.P.
        • Schmid C.H.
        Quantitative synthesis in systematic reviews.
        Ann Intern Med. 1997; 127: 820-826
        • Higgins J.P.
        • Thompson S.G.
        • Deeks J.J.
        • Altman D.G.
        Measuring inconsistency in meta-analyses.
        BMJ. 2003; 327: 557-560
        • Kaviani A.
        • Djavid G.E.
        • Ataie-Fashtami L.
        • Fateh M.
        • Ghodsi M.
        • Salami M.
        • et al.
        A randomized clinical trial on the effect of low-level laser therapy on chronic diabetic foot wound healing: a preliminary report.
        Photomed Laser Surg. 2011; 29: 109-114
        • Landau Z.
        • Migdal M.
        • Lipovsky A.
        • Lubart R.
        Visible light-induced healing of diabetic or venous foot ulcers: a placebo-controlled double-blind study.
        Photomed Laser Surg. 2011; 29: 399-404
        • Minatel D.G.
        • Frade M.A.
        • Franca S.C.
        • Enwemeka C.S.
        Phototherapy promotes healing of chronic diabetic leg ulcers that failed to respond to other therapies.
        Lasers Surg Med. 2009; 41: 433-441
        • Mathur R.K.
        • Sahu K.
        • Saraf S.
        • Patheja P.
        • Khan F.
        • Gupta P.K.
        Low-level laser therapy as an adjunct to conventional therapy in the treatment of diabetic foot ulcers.
        Lasers Med Sci. 2017; 32: 275-282
        • Carvalho A.F.
        • Feitosa M.C.
        • Coelho N.P.
        • Rebelo V.C.
        • Castro J.G.
        • Sousa P.R.
        • et al.
        Low-level laser therapy and Calendula officinalis in repairing diabetic foot ulcers.
        Rev Esc Enferm USP. 2016; 50: 628-634
        • Hoseini Sanati M.
        • Torkaman G.
        • Hedayati M.
        • Iranparvar Alamdari M.
        Effect of Ga-As laser on decrease of wound surface area and ABI value in diabetic foot ulcers.
        J Zanjan Univ Med Sci Health Services. 2016; 24: 20-21
        • Feitosa M.C.
        • Carvalho A.F.
        • Feitosa V.C.
        • Coelho I.M.
        • Oliveira R.A.
        • Arisawa E.A.
        Effects of the Low-Level Laser Therapy (LLLT) in the process of healing diabetic foot ulcers.
        Acta Cir Bras. 2015; 30: 852-857
        • Sutton A.J.
        • Duval S.J.
        • Tweedie R.L.
        • Abrams K.R.
        • Jones D.R.
        Empirical assessment of effect of publication bias on meta-analyses.
        BMJ. 2000; 320: 1574-1577
        • Brem H.
        • Sheehan P.
        • Rosenberg H.J.
        • Schneider J.S.
        • Boulton A.J.
        Evidence-based protocol for diabetic foot ulcers.
        Plast Reconstr Surg. 2006; 117 ([discussion 10S-11S]): 193S-209S
        • Tchanque-Fossuo C.N.
        • Ho D.
        • Dahle S.E.
        • Koo E.
        • Li C.S.
        • Isseroff R.R.
        • et al.
        A systematic review of low-level light therapy for treatment of diabetic foot ulcer.
        Wound Repair Regen. 2016; 24: 418-426
        • Peplow P.V.
        • Baxter G.D.
        Gene expression and release of growth factors during delayed wound healing: a review of studies in diabetic animals and possible combined laser phototherapy and growth factor treatment to enhance healing.
        Photomed Laser Surg. 2012; 30: 617-636
        • Ayuk S.M.
        • Houreld N.N.
        • Abrahamse H.
        Collagen production in diabetic wounded fibroblasts in response to low-intensity laser irradiation at 660 nm.
        Diabetes Technol Ther. 2012; 14: 1110-1117
        • Aparecida Da Silva A.
        • Leal-Junior E.C.
        • Alves A.C.
        • Rambo C.S.
        • Dos Santos S.A.
        • Vieira R.P.
        • et al.
        Wound-healing effects of low-level laser therapy in diabetic rats involve the modulation of MMP-2 and MMP-9 and the redistribution of collagen types I and III.
        J Cosmet Laser Ther. 2013; 15: 210-216
        • Byrnes K.R.
        • Barna L.
        • Chenault V.M.
        • Waynant R.W.
        • Ilev I.K.
        • Longo L.
        • et al.
        Photobiomodulation improves cutaneous wound healing in an animal model of type II diabetes.
        Photomed Laser Surg. 2004; 22: 281-290
        • Yu H.S.
        • Wu C.S.
        • Yu C.L.
        • Kao Y.H.
        • Chiou M.H.
        Helium-neon laser irradiation stimulates migration and proliferation in melanocytes and induces repigmentation in segmental-type vitiligo.
        J Invest Dermatol. 2003; 120: 56-64
        • Yu H.S.
        • Chang K.L.
        • Yu C.L.
        • Chen J.W.
        • Chen G.S.
        Low-energy helium-neon laser irradiation stimulates interleukin-1 alpha and interleukin-8 release from cultured human keratinocytes.
        J Invest Dermatol. 1996; 107: 593-596
        • Safavi S.M.
        • Kazemi B.
        • Esmaeili M.
        • Fallah A.
        • Modarresi A.
        • Mir M.
        Effects of low-level He-Ne laser irradiation on the gene expression of IL-1beta, TNF-alpha, IFN-gamma, TGF-beta, bFGF, and PDGF in rat's gingiva.
        Lasers Med Sci. 2008; 23: 331-335
        • Mester E.
        • Ludany G.
        • Sellyei M.
        • Szende B.
        • Gyenes G.
        • Tota G.J.
        Studies on the inhibiting and activating effects of laser beams.
        Langenbecks Arch Chir. 1968; 322: 1022-1027
        • Dube A.
        • Bansal H.
        • Gupta P.K.
        Modulation of macrophage structure and function by low level He-Ne laser irradiation.
        Photochem Photobiol Sci. 2003; 2: 851-855
        • Hemvani N.
        • Chitnis D.S.
        • Bhagwanani N.S.
        Helium-neon and nitrogen laser irradiation accelerates the phagocytic activity of human monocytes.
        Photomed Laser Surg. 2005; 23: 571-574
        • Young S.
        • Bolton P.
        • Dyson M.
        • Harvey W.
        • Diamantopoulos C.
        Macrophage responsiveness to light therapy.
        Lasers Surg Med. 1989; 9: 497-505
        • Zhou J.D.
        • Luo C.Q.
        • Xie H.Q.
        • Nie X.M.
        • Zhao Y.Z.
        • Wang S.H.
        • et al.
        Increased expression of heat shock protein 70 and heat shock factor 1 in chronic dermal ulcer tissues treated with laser-aided therapy.
        Chin Med J (Engl). 2008; 121: 1269-1273
        • Ankri R.
        • Friedman H.
        • Savion N.
        • Kotev-Emeth S.
        • Breitbart H.
        • Lubart R.
        Visible light induces nitric oxide (NO) formation in sperm and endothelial cells.
        Lasers Surg Med. 2010; 42: 348-352
        • Samoilova K.A.
        • Zhevago N.A.
        • Petrishchev N.N.
        • Zimin A.A.
        Role of nitric oxide in the visible light-induced rapid increase of human skin microcirculation at the local and systemic levels: II. healthy volunteers.
        Photomed Laser Surg. 2008; 26: 443-449
        • Salvi M.
        • Rimini D.
        • Molinari F.
        • Bestente G.
        • Bruno A.
        Effect of low-level light therapy on diabetic foot ulcers: a near-infrared spectroscopy study.
        J Biomed Opt. 2017; 22: 38001
        • Wagner V.P.
        • Curra M.
        • Webber L.P.
        • Nor C.
        • Matte U.
        • Meurer L.
        • et al.
        Photobiomodulation regulates cytokine release and new blood vessel formation during oral wound healing in rats.
        Lasers Med Sci. 2016; 31: 665-671
        • Bjordal J.M.
        • Johnson M.I.
        • Iversen V.
        • Aimbire F.
        • Lopes-Martins R.A.
        Low-level laser therapy in acute pain: a systematic review of possible mechanisms of action and clinical effects in randomized placebo-controlled trials.
        Photomed Laser Surg. 2006; 24: 158-168
        • Gur A.
        • Sarac A.J.
        • Cevik R.
        • Altindag O.
        • Sarac S.
        Efficacy of 904 nm gallium arsenide low level laser therapy in the management of chronic myofascial pain in the neck: a double-blind and randomize-controlled trial.
        Lasers Surg Med. 2004; 35: 229-235
        • Saltmarche A.E.
        Low level laser therapy for healing acute and chronic wounds - the extendicare experience.
        Int Wound J. 2008; 5: 351-360
        • Woodruff L.D.
        • Bounkeo J.M.
        • Brannon W.M.
        • Dawes K.S.
        • Barham C.D.
        • Waddell D.L.
        • et al.
        The efficacy of laser therapy in wound repair: a meta-analysis of the literature.
        Photomed Laser Surg. 2004; 22: 241-247
        • Sobanko J.F.
        • Alster T.S.
        Efficacy of low-level laser therapy for chronic cutaneous ulceration in humans: a review and discussion.
        Dermatol Surg. 2008; 34: 991-1000
        • Bjordal J.M.
        • Bensadoun R.J.
        • Tuner J.
        • Frigo L.
        • Gjerde K.
        • Lopes-Martins R.A.
        A systematic review with meta-analysis of the effect of low-level laser therapy (LLLT) in cancer therapy-induced oral mucositis.
        Support Care Cancer. 2011; 19: 1069-1077
        • Kwan R.L.
        • Cheing G.L.
        • Vong S.K.
        • Lo S.K.
        Electrophysical therapy for managing diabetic foot ulcers: a systematic review.
        Int Wound J. 2013; 10: 121-131
        • Beckmann K.H.
        • Meyer-Hamme G.
        • Schroder S.
        Low level laser therapy for the treatment of diabetic foot ulcers: a critical survey.
        Evid Based Complement Alternat Med. 2014; 2014626127