Advertisement

The effect of glucagon-like peptide 1 and glucagon-like peptide 1 receptor agonists on energy expenditure: A systematic review and meta-analysis

      Abstract

      Aim

      We reviewed clinical trials addressing the effect of glucacon-like peptide 1 (GLP-1) or GLP-1 receptor agonists (GLP-1RA) on energy expenditure (EE) in adults.

      Materials and methods

      PubMed, Science Direct and Web of Science were searched for clinical trials investigating the effect of GLP-1 or GLP-1RA on EE in adults.

      Results

      Ten trials (93 participants) assessed the effect of GLP-1 administration over 1 to 48 h and found no change in resting EE (REE). Two out of three trials (62 participants) reported a significant decrease in diet-induced thermogenesis (DIT) following GLP-1 administration. Ten trials with exenatide (10 μg bid, for 10–52 weeks) or liraglutide (0.6, 1.2, 1.8 or 3 mg, for 3 days-52 weeks), with a total of 282 participants, indicated a neutral effect of these GLP-1RA on REE, DIT or physical activity-induced EE. Importantly, the longest trial with GLP-1RA reported a significant increase in REE in response to treatment with both exenatide or liraglutide and most trials reported that GLP-1RA-induced weight loss was not accompanied by decreased REE.

      Conclusions

      This review indicates that GLP-1 has no short-term effect on REE but may decrease DIT. The GLP-1RA exenatide and liraglutide have a neutral effect on REE, although it is not possible to rule out an increase in REE following prolonged treatment.

      Keywords

      Abbreviations:

      AIEE (activity-induced energy expenditure), BM (body mass), BW (body weight), CHF (chronic heart failure), CHO (carbohydrate), CI (confidence interval), DIT (diet-induced thermogenesis), EE (energy expenditure), EPHPP (Effective Public Health Practice Project), ETD (estimated treatment difference), FFM (fat-free mass), GE (gastric emptying), GH (growth hormone), GLP-1 (glucagon-like peptide-1), GLP-1RA (glucagon-like peptide-1 receptor agonist), IHD (ischemic heart disease), iNKT (invariant natural killer T cells), IV (intravenous), NGT (normal glucose tolerance), NR (not reported), PAEE (physical activity-induced energy expenditure), PICOS (population, intervention, control, outcome, study type), PYY (peptide YY), PWS (Prader-Willi syndrome), RCT (randomized clinical trial), REE (resting energy expenditure), RMR (resting metabolic rate), SC (subcutaneous), SD (standard deviation), SE (standard error), SEM (standard error of mean), SMT (somatostatin), TEE (total energy expenditure), TEM (thermic effect of meals), T2D (type 2 diabetes)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Diabetes Research and Clinical Practice
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

      1. WHO. World Health Organization. Obesity and overweight. 2016.

        • Spiegelman B.M.
        • Flier J.S.
        Obesity and the regulation of energy balance.
        Cell. 2001; 104: 531-543
        • Fujioka K.
        Current and emerging medications for overweight or obesity in people with comorbidities.
        Diabetes Obes Metab. 2015; 17: 1021-1032
        • Kim G.W.
        • Lin J.E.
        • Blomain E.S.
        • Waldman S.A.
        Antiobesity pharmacotherapy: new drugs and emerging targets.
        Clin Pharmacol Ther. 2014; 95: 53-66
        • Field B.C.
        • Chaudhri O.B.
        • Bloom S.R.
        Bowels control brain: gut hormones and obesity.
        Nat Rev Endocrinol. 2010; 6: 444-453
        • Mishra A.K.
        • Dubey V.
        • Ghosh A.R.
        Obesity: an overview of possible role(s) of gut hormones, lipid sensing and gut microbiota.
        Metabolism. 2016; 65: 48-65
        • Farilla L.
        • Bulotta A.
        • Hirshberg B.
        • Li Calzi S.
        • Khoury N.
        • Noushmehr H.
        • et al.
        Glucagon-like peptide 1 inhibits cell apoptosis and imporves glucose responsiveness of freshly isolated human islets.
        Endocrinol. 2003; 144: 5149-5159
        • Buteau J.
        • Foisy S.
        • Joly E.
        • Prentki M.
        Glucagon-like peptide 1 induces pancreatic beta-cell proliferation via transactivation of the epidermal growth factor receptor.
        Diabetes. 2003; 52: 124-132
        • Nauck M.A.
        • Heimesaat M.M.
        • Behle K.
        • Holst J.J.
        • Nauck M.S.
        • Ritzel R.
        • et al.
        Effects of glucagon-like peptide 1 on counterregulatory homone responses, cognitive functions, and insulin secretion during hyperinsulinemic, stepped hypoglycemic clamp experiments in healthy volunteers.
        J Clin Endocrinol Metab. 2002; 87: 1239-1246
        • Meier J.J.
        • Gallwitz B.
        • Salmen S.
        • Goetze O.
        • Holst J.J.
        • Schmidt W.E.
        • et al.
        Normalization of glucose concentrations and deceleration of gastric emptying after solid meals during intravenous glucagon-like peptide 1 in patients with type 2 diabetes.
        J Clin Endocrinol Metab. 2003; 88: 2719-2725
        • Flint A.
        • Raben A.
        • Astrup A.
        • Holst J.J.
        Glucagon-like peptide 1 promotes satiety and suppresses energy intake in humans.
        J Clin Invest. 1998; 101: 515-520
        • Meier J.J.
        GLP-1 receptor agonists for individualized treatment of type 2 diabetes mellitus.
        Nat Rev Endocrinol. 2012; 8: 728-742
        • Valverde I.
        • Morales M.
        • Clemente F.
        • López-Delgado M.I.
        • Delgado E.
        • Perea A.
        • et al.
        Glucagon-like peptide 1: a potent glycogenic hormone.
        FEBBS Lett. 1994; 349: 313-316
        • Luque M.A.
        • Gonzalez N.
        • Marquez L.
        • Acitores A.
        • Redondo A.
        • Morales M.
        • et al.
        Glucagon-like peptide 1 (GLP-1) and glucose metabolism in human myocytes.
        J Endocrinol. 2002; 173: 465-473
        • Villanueva-Penacarrillo M.L.
        • Marquez L.
        • Gonzalez N.
        • Diaz-Miguel M.
        • Valverde I.
        Effect of GLP-1 on lipid metabolism in human adipocytes.
        Horm Metab Res. 2001; 33: 73-77
        • Holst J.J.
        • Vilsboll T.
        • Deacon C.F.
        The incretin system and its role in type 2 diabetes mellitus.
        Mol Cell Endocrinol. 2009; 297: 127-136
        • Nogueiras R.
        • Perez-Tilve D.
        • Veyrat-Durebex C.
        • Morgan D.A.
        • Varela L.
        • Haynes W.G.
        • et al.
        Direct control of peripheral lipid deposition by CNS GLP-1 receptor signaling is mediated by the sympathetic nervous system and blunted in diet-induced obesity.
        J Neurosci. 2009; 29: 5916-5925
        • Blonde L.
        • Russell-Jones D.
        The safety and efficacy of liraglutide with or without oral antidiabetic drug therapy in type 2 diabetes: an overview of the LEAD 1–5 studies.
        Diabetes Obes Metab. 2009; 11: 26-34
        • Pi-Sunyer X.
        • Astrup A.
        • Fujioka K.
        • Greenway F.
        • Halpern A.
        • Krempf M.
        • et al.
        A Randomized, Controlled Trial of 3.0 mg of Liraglutide in Weight Management.
        N Engl J Med. 2015; 373: 11-22
        • van Can J.
        • Sloth B.
        • Jensen C.B.
        • Flint A.
        • Blaak E.E.
        • Saris W.H.
        Effects of the once-daily GLP-1 analog liraglutide on gastric emptying, glycemic parameters, appetite and energy metabolism in obese, non-diabetic adults.
        Int J Obes (Lond). 2014; 38: 784-793
        • Beiroa D.
        • Imbernon M.
        • Gallego R.
        • Senra A.
        • Herranz D.
        • Villarroya F.
        GLP-1 agonism stimulates brown adipose tissue thermogenesis and browning through hypothalamic AMPK.
        Diabetes. 2014; 63: 3346-3358
        • Xu F.
        • Lin B.
        • Zheng X.
        • Chen Z.
        • Cao H.
        • Xu H.
        • et al.
        GLP-1 receptor agonist promotes brown remodelling in mouse white adipose tissue through SIRT1.
        Diabetologia. 2016; 59: 1059-1069
        • Lynch L.
        • Hogan A.E.
        • Duquette D.
        • Lester C.
        • Banks A.
        • LeClair K.
        • et al.
        iNKT Cells Induce FGF21 for thermogenesis and are required for maximal weight loss in GLP1 therapy.
        Cell Metab. 2016; 24: 510-519
        • Wu J.
        • Bostrom P.
        • Sparks L.M.
        • Ye L.
        • Choi J.H.
        • Giang A.H.
        • et al.
        Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human.
        Cell. 2012; 150: 366-376
        • Moher D.
        • Liberati A.
        • Tetzlaff J.
        • Altman D.G.
        • Group P.
        Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement.
        Int J Surg. 2010; 8: 336-341
        • Thomas B.H.
        • Ciliska D.
        • Dobbins M.
        • Micucci S.
        A process for systematically reviewing the literature: providing the research evidence for public health nursing interventions.
        Worldviews Evid Based Nurs. 2004; 1: 176-184
        • Liberati A.
        • Altman D.G.
        • Tetzlaff J.
        • Mulrow C.
        • Gotzsche P.C.
        • Ioannidis J.P.
        • et al.
        The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration.
        J Clin Epidemiol. 2009; 62: e1-e34
        • Farr O.M.
        • Tsoukas M.A.
        • Triantafyllou G.
        • Dincer F.
        • Filippaios A.
        • Ko B.J.
        • et al.
        Short-term administration of the GLP-1 analog liraglutide decreases leptin and increases GIP levels and these changes are associated with alterations in CNS responses to food cues: a randomized, placebo-controlled, cross-over study.
        Metabolism. 2016; 65: 945-953
        • Horowitz M.
        • Flint A.
        • Jones K.L.
        • Hindsberger C.
        • Rasmussen M.F.
        • Kapitza C.
        • et al.
        Effect of the once-daily human GLP-1 analogue liraglutide on appetite, energy intake, energy expenditure and gastric emptying in type 2 diabetes.
        Diabetes Res Clin Pract. 2012; 97: 258-266
        • Orskov L.
        • Holst J.J.
        • Moller J.
        • Orskov C.
        • Moller N.
        • Alberti K.G.
        • et al.
        GLP-1 does not acutely affect insulin sensitivity in healthy man.
        Diabetologia. 1996; 39: 1227-1232
        • Nauck M.A.
        • Weber I.
        • Bach I.
        • Richter S.
        • Orskov C.
        • Holst J.J.
        • et al.
        Normalization of fasting glycaemia by intravenous GLP-1 ([7-36 amide] or [7-37]) in type 2 diabetic patients.
        Diabet Med. 1998; 15: 937-945
        • Nielsen R.
        • Wiggers H.
        • Halbirk M.
        • Botker H.
        • Holst J.J.
        • Schmitz O.
        • et al.
        Metabolic effects of short-term GLP-1 treatment on insulin resistant heart failure patients.
        Exp Clin Endocrinol Diabetes. 2012; 120: 266-272
        • Shalev A.
        • Holst J.J.
        • Keller U.
        Effects of glucagon-like peptide 1 (7–36 amide) on whole-body protein metabolism in healthy man.
        Eur J Clin Invest. 1997; 27: 10-16
        • Toft-Nielsen M.B.
        • Madsbad S.
        • Holst J.J.
        Continuous subcutaneous infusion of glucagon-like peptide 1 lowers plasma glucose and reduces appetite in type 2 diabetic patients.
        Diabetes Care. 1999; 22: 1137-1143
        • Daousi C.
        • Wilding J.P.
        • Aditya S.
        • Durham B.H.
        • Cleator J.
        • Pinkney J.H.
        • et al.
        Effects of peripheral administration of synthetic human glucose-dependent insulinotropic peptide (GIP) on energy expenditure and subjective appetite sensations in healthy normal weight subjects and obese patients with type 2 diabetes.
        Clin Endocrinol (Oxf). 2009; 71: 195-201
        • Tan T.M.
        • Field B.C.
        • McCullough K.A.
        • Troke R.C.
        • Chambers E.S.
        • Salem V.
        • et al.
        Coadministration of glucagon-like peptide-1 during glucagon infusion in humans results in increased energy expenditure and amelioration of hyperglycemia.
        Diabetes. 2013; 62: 1131-1138
        • Cegla J.
        • Troke R.C.
        • Jones B.
        • Tharakan G.
        • Kenkre J.
        • McCullough K.A.
        • et al.
        Coinfusion of low-dose GLP-1 and glucagon in man results in a reduction in food intake.
        Diabetes. 2014; 63: 3711-3720
        • Schmidt J.B.
        • Gregersen N.T.
        • Pedersen S.D.
        • Arentoft J.L.
        • Ritz C.
        • Schwartz T.W.
        • et al.
        Effects of PYY3-36 and GLP-1 on energy intake, energy expenditure, and appetite in overweight men.
        Am J Physiol Endocrinol Metab. 2014; 306: E1248-E1256
        • Junker A.E.
        • Gluud L.L.
        • van Hall G.
        • Holst J.J.
        • Knop F.K.
        • Vilsboll T.
        Effects of glucagon-like peptide-1 on glucagon secretion in patients with non-alcoholic fatty liver disease.
        J Hepatol. 2016; 64: 908-915
        • Flint A.
        • Raben A.
        • Rehfeld J.F.
        • Holst J.J.
        • Astrup A.
        The effect of glucagon-like peptide-1 on energy expenditure and substrate metabolism in humans.
        Int J Obes Relat Metab Disord. 2000; 24: 288-298
        • Flint A.
        • Raben A.
        • Ersboll A.K.
        • Holst J.J.
        • Astrup A.
        The effect of physiological levels of glucagon-like peptide-1 on appetite, gastric emptying, energy and substrate metabolism in obesity.
        Int J Obes Relat Metab Disord. 2001; 25: 781-792
        • Bagger J.I.
        • Holst J.J.
        • Hartmann B.
        • Andersen B.
        • Knop F.K.
        • Vilsboll T.
        Effect of Oxyntomodulin, Glucagon, GLP-1, and Combined Glucagon +GLP-1 Infusion on Food Intake, Appetite, and Resting Energy Expenditure.
        J Clin Endocrinol Metab. 2015; 100: 4541-4552
        • Bradley D.P.
        • Kulstad R.
        • Racine N.
        • Shenker Y.
        • Meredith M.
        • Schoeller D.A.
        Alterations in energy balance following exenatide administration.
        Appl Physiol Nutr Metab. 2012; 37: 893-899
        • Sze L.
        • Purtell L.
        • Jenkins A.
        • Loughnan G.
        • Smith E.
        • Herzog H.
        • et al.
        Effects of a single dose of exenatide on appetite, gut hormones, and glucose homeostasis in adults with Prader-Willi syndrome.
        J Clin Endocrinol Metab. 2011; 96: E1314-E1319
        • Dushay J.
        • Gao C.
        • Gopalakrishnan G.S.
        • Crawley M.
        • Mitten E.K.
        • Wilker E.
        • et al.
        Short-term exenatide treatment leads to significant weight loss in a subset of obese women without diabetes.
        Diabetes Care. 2012; 35: 4-11
        • Lomenick J.P.
        • Buchowski M.S.
        • Shoemaker A.H.
        A 52-week pilot study of the effects of exenatide on body weight in patients with hypothalamic obesity.
        Obesity (Silver Spring). 2016; 24: 1222-1225
        • Harder H.
        • Nielsen L.
        • Tu D.T.
        • Astrup A.
        The effect of liraglutide, a long-acting glucagon-like peptide 1 derivative, on glycemic control, body composition, and 24-h energy expenditure in patients with type 2 diabetes.
        Diabetes Care. 2004; 27: 1915-1921
        • Gonzalez C.
        • Fagour C.
        • Maury E.
        • Cherifi B.
        • Salandini S.
        • Pierreisnard A.
        • et al.
        Early changes in respiratory quotient and resting energy expenditure predict later weight changes in patients treated for pooly controled type 2 diabetes.
        Diabetes Metab. 2014; 40: 299-304
        • Blundell J.
        • Finlayson G.
        • Axelsen M.
        • Flint A.
        • Gibbons C.
        • Kvist T.
        • et al.
        Effects of once-weekly semaglutide on appetite, energy intake, control of eating, food preference and body weight in subjects with obesity.
        Diabetes Obes Metab. 2017; 19: 1242-1251
        • Vollenweider P.
        • Tappy L.
        • Randin D.
        • Schneiter P.
        • Jequier E.
        • Nicod P.
        • et al.
        Differential effects of hyperinsulinemia and carbohydrate metabolism on sympathetic nerve activity and muscle blood flow in humans.
        J Clin Invest. 1993; 92: 147-154
        • Christin L.
        • Nacht C.A.
        • Vernet O.
        • Ravussin E.
        • Jequier E.
        • Acheson K.J.
        Insulin. Its role in the thermic effect of glucose.
        J Clin Invest. 1986; 77: 1747-1755
        • Salem V.
        • Izzi-Engbeaya C.
        • Coello C.
        • Thomas D.B.
        • Chambers E.S.
        • Comninos A.N.
        • et al.
        Glucagon increases energy expenditure independently of brown adipose tissue activation in humans.
        Diabetes Obes Metab. 2016; 18: 72-81
        • Ravussin E.
        • Lillioja S.
        • Anderson T.E.
        • Christin L.
        • Bogardus C.
        Determinants of 24-hour energy expenditure in man. Methods and results using a respiratory chamber.
        J Clin Invest. 1986; 78: 1568-1578
        • Weyer C.
        • Snitker S.
        • Rising R.
        • Bogardus C.
        • Ravussin E.
        Determinants of energy expenditure and fuel utilization in man: effects of body composition, age, sex, ethnicity and glucose tolerance in 916 subjects.
        Int J Obes Relat Metab Disord. 1999; 23: 715-722
        • Astrup A.
        • Gotzsche P.
        • Kvd Werken
        • Ranneries C.
        • Toubro S.
        • Raben A.
        • et al.
        Meta-analysis of resting metabolic rate in formerly obese subjects.
        Am J Clin Nutr. 1999; 69: 1117-1122
        • Leibel R.
        • Rosenbaum M.
        • Hirsch J.
        Changes in energy expenditure resulting from altered body weight.
        N Eng J Med. 1995; 332: 621-628
        • Weigle D.
        • Sande K.
        • Iverius P.
        • Monsen E.
        • Brunzell J.
        Weight loss leads to a marked decrease in nonresting energy expenditure in ambulatory human subjects.
        Metabolism. 1988; 37: 930-936