The place of gliclazide MR in the evolving type 2 diabetes landscape: A comparison with other sulfonylureas and newer oral antihyperglycemic agents


      The sulfonylureas are effective oral glucose-lowering agents with a long history of clinical use. While all have the same general mechanism of action, their pharmacokinetic properties are influenced by factors such as dosage, rate of absorption, duration of action, route of elimination, tissue specificity, and binding affinity for pancreatic β-cell receptor. The result is a class of agents with similar HbA1c-lowering efficacy, but well-documented differences in terms of effects on hypoglycemia, and cardiovascular and renal safety. This review examines the differences between currently available sulfonylureas with a focus on how gliclazide modified release (MR) differs from other members of this class and from newer oral antihyperglycemic agents in the form of dipeptidyl peptidase-4 (DPP4) and sodium– glucose cotransporter 2 (SGLT2) inhibitors. The first part focuses on major outcome trials that have been conducted with the sulfonylureas and new oral agents. Consideration is then given to factors important for day-to-day prescribing including efficacy and durability, weight changes, hypoglycemia, renal effects and cost.
      Based on current evidence, third-generation sulfonylureas such as gliclazide MR possess many of the properties desired of a type 2 diabetes drug including high glucose-lowering efficacy, once-daily oral administration, few side effects other than mild hypoglycemia, and cardiovascular safety.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Diabetes Research and Clinical Practice
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Lipska K.J.
        • Yao X.
        • Herrin J.
        • McCoy R.G.
        • Ross J.S.
        • Steinman M.A.
        • et al.
        Trends in drug utilization, glycemic control, and rates of severe hypoglycemia, 2006–2013.
        Diabetes Care. 2017; 40: 468-475
        • Overbeek J.A.
        • Heintjes E.M.
        • Prieto-Alhambra D.
        • Blin P.
        • Lassalle R.
        • Hall G.C.
        • et al.
        Type 2 diabetes mellitus treatment patterns across Europe: a population-based multi-database study.
        Clin Ther. 2017; 39: 759-770
        • Riddle M.C.
        Modern sulfonylureas: dangerous or wrongly accused?.
        Diabetes Care. 2017; 40: 629-631
        • Ashcroft F.M.
        • Gribble F.M.
        ATP-sensitive K+ channels and insulin secretion: their role in health and disease.
        Diabetologia. 1999; 42: 903-919
      1. Bataille D. Molecular mechanisms of insulin secretion. Diabetes Metab 2002; 28(6 Suppl): 4S7–4S13.

        • Clement J.P.
        • Kunjilwar K.
        • Gonzalez G.
        • Schwanstecher M.
        • Panten U.
        • Aguilar-Bryan L.
        • et al.
        Association and stoichiometry of K(ATP) channel subunits.
        Neuron. 1997; 18: 827-838
        • Gribble F.M.
        • Tucker S.J.
        • Seino S.
        • Ashcroft F.M.
        Tissue specificity of sulfonylureas: studies on cloned cardiac and beta-cell K(ATP) channels.
        Diabetes. 1998; 47: 1412-1418
        • Wascher T.C.
        • Boes U.
        Forearm vascular reactivity is differentially influenced by gliclazide and glibenclamide in chronically treated type 2 diabetic patients.
        Clin Physiol Funct Imag. 2005; 25: 40-46
        • Sawada F.
        • Inoguchi T.
        • Tsubouchi H.
        • Sasaki S.
        • Fujii M.
        • Maeda Y.
        • et al.
        Differential effect of sulfonylureas on production of reactive oxygen species and apoptosis in cultured pancreatic beta-cell line, MIN6.
        Metabolism. 2008; 57: 1038-1045
        • Noda Y.
        • Mori A.
        • Cossins E.
        • Packer L.
        Gliclazide scavenges hydroxyl and superoxide radicals: an electron spin resonance study.
        Metabolism. 2000; 49: 14-16
        • Fava D.
        • Cassone-Faldetta M.
        • Laurenti O.
        • De Luca O.
        • Ghiselli A.
        • De Mattia G.
        Gliclazide improves anti-oxidant status and nitric oxide-mediated vasodilation in Type 2 diabetes.
        Diabet Med. 2002; 19: 752-757
        • Harrower A.D.
        Efficacy of gliclazide in comparison with other sulphonylureas in the treatment of NIDDM.
        Diabetes Res Clin Pract. 1991; 14: S65-S67
        • Satoh J.
        • Takahashi K.
        • Takizawa Y.
        • Ishihara H.
        • Hirai M.
        • Katagiri H.
        • et al.
        Secondary sulfonylurea failure: comparison of period until insulin treatment between diabetic patients treated with gliclazide and glibenclamide.
        Diabetes Res Clin Prac. 2005; 70: 291-297
      2. Food and Drug Administration (FDA). Guidance for industry: diabetes mellitus – evaluating cardiovascular risk in new antidiabetic therapies to treat type 2 diabetes 2008. [Last accessed Feb 24 2018], available at:

        • Meinert C.L.
        • Knatterud G.L.
        • Prout T.E.
        • Klimt C.R.
        A study of the effects of hypoglycemic agents on vascular complications in patients with adult-onset diabetes. II. Mortality results.
        Diabetes. 1970; 19: 789-830
        • Leibel B.
        An analysis of the University Group Diabetes Study Program: data results and conslusions.
        Can Med Assoc J. 1971; 105: 292-294
        • UK Prospective Diabetes Study (UKPDS) Group
        Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33.
        Lancet. 1998; 352: 837-853
        • UK Prospective Diabetes Study (UKPDS) Group
        Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34.
        Lancet. 1998; 352: 854-865
        • Holman R.R.
        • Paul S.K.
        • Bethel M.A.
        • Matthews D.R.
        • Neil H.A.
        10-year follow-up of intensive glucose control in type 2 diabetes.
        N Engl J Med. 2008; 359: 1577-1589
      3. Vaccaro O, Masulli M, Nicolucci A, Bonora E, Del Prato S, Maggioni AP, et al., Thiazolidinediones Or Sulfonylureas Cardiovascular Accidents Intervention Trial (TOSCA.IT) study group; Italian Diabetes Society. Effects on the incidence of cardiovascular events of the addition of pioglitazone versus sulfonylureas in patients with type 2 diabetes inadequately controlled with metformin (TOSCA.IT): a randomised, multicentre trial. Lancet Diabetes Endocrinol 2017;5(11):887–897.

        • ADVANCE Collaborative Group
        Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes.
        N Engl J Med. 2008; 358: 2560-2572
        • Zoungas S.
        • Chalmers J.
        • Neal B.
        • Billot L.
        • Li Q.
        • Hirakawa Y.
        • et al.
        ADVANCE-ON Collaborative Group. Follow-up of blood-pressure lowering and glucose control in type 2 diabetes.
        N Engl J Med. 2014; 371: 1392-1406
        • Wong M.G.
        • Perkovic V.
        • Chalmers J.
        • et al.
        ADVANCE-ON Collaborative Group. Long-term benefits of intensive glucose control for preventing end-stage kidney disease: ADVANCE- ON.
        Diabetes Care. 2016; 39: 694-700
        • Gaede P.
        • Vedel P.
        • Parving H.H.
        • Pedersen O.
        Intensified multifactorial intervention in patients with type 2 diabetes mellitus and microalbuminuria: the Steno type 2 randomised study.
        Lancet. 1999; 353: 617-622
        • Gaede P.
        • Vedel P.
        • Larsen N.
        • Jensen G.V.
        • Parving H.H.
        • Pedersen O.
        Multifactorial intervention and cardiovascular disease in patients with type 2 diabetes.
        N Engl J Med. 2003; 348: 383-393
        • Gaede P.
        • Lund-Andersen H.
        • Parving H.H.
        • Pedersen O.
        Effect of a multifactorial intervention on mortality in type 2 diabetes.
        N Engl J Med. 2008; 358: 580-591
        • Simpson S.H.
        • Lee J.
        • Choi S.
        • Vandermeer B.
        • Abdelmoneim A.S.
        • Featherstone T.R.
        Mortality risk among sulfonylureas: a systematic review and network meta- analysis.
        Lancet Diabetes Endocrinol. 2015; 3: 43-51
        • Pop L.M.
        • Lingvay I.
        The infamous, famous sulfonylureas and cardiovascular safety: much ado about nothing?.
        Curr Diab Rep. 2017; 17: 124
        • Azoulay L.
        • Suissa S.
        Sulfonylureas and the risks of cardiovascular events and death: a methodological meta-regression analysis of the observational studies.
        Diabetes Care. 2017; 40: 706-714
        • Schramm T.K.
        • Gislason G.H.
        • Vaag A.
        • Rasmussen J.N.
        • Folkes F.
        • Hansen M.L.
        • et al.
        Mortality and cardiovascular risk associated with different insulin secretagogues compared with metformin in type 2 diabetes, with or without a previous myocardial infarction: a nationwide study.
        Eur Heart J. 2011; 32: 1900-1908
        • Douros A.
        • Yin H.
        • Yu O.H.Y.
        • Filion K.B.
        • Azoulay L.
        • Suissa S.
        Pharmacologic differences of sulfonylureas and the risk of adverse cardiovascular and hypoglycemic events.
        Diabetes Care. 2017; 40: 1506-1512
        • Scirica B.M.
        • Bhatt D.L.
        • Braunwald E.
        • Steg P.G.
        • Davidson J.
        • Hirshberg B.
        • et al.
        Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus.
        New Engl J Med. 2013; 369: 1317-1326
        • Green J.B.
        • Bethel M.A.
        • Armstrong P.W.
        • Buse J.B.
        • Engel S.S.
        • Garg J.
        • et al.
        Effect of sitagliptin on cardiovascular outcomes in type 2 diabetes (TECOS).
        New Engl J Med. 2015; 373: 232-242
        • White W.B.
        • Cannon C.P.
        • Heller S.R.
        • Nissen S.E.
        • Bergenstal R.M.
        • Bakris G.L.
        • et al.
        EXAMINE Investigators. Alogliptin after acute coronary syndrome in patients with type 2 diabetes.
        N Engl J Med. 2013; 369: 1327-1335
        • Zinman B.
        • Wanner C.
        • Lachin J.M.
        • Fitchett D.
        • Bluhmki E.
        • Hantel S.
        • et al.
        EMPA-REG OUTCOME Investigators. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes.
        N Engl J Med. 2015; 373: 2117-2128
        • Neal B.
        • Perkovic V.
        • Mahaffey K.W.
        • de Zeeuw D.
        • Fulcher G.
        • Erondu N.
        • et al.
        CANVAS Program Collaborative Group. Canagliflozin and cardiovascular and renal events in type 2 diabetes.
        N Engl J Med. 2017; 377: 644-657
        • Marx N.
        • Rosenstock J.
        • Kahn S.E.
        • Zinman B.
        • Kastelein J.J.
        • Lachin J.M.
        • et al.
        Design and baseline characteristics of the CARdiovascular Outcome Trial of LINAgliptin Versus Glimepiride in Type 2 Diabetes (CAROLINA®).
        Diab Vasc Dis Res. 2015; 12: 164-174
        • Lee G.
        • Oh S.W.
        • Hwang S.S.
        • Yoon J.W.
        • Kang S.
        • Joh H.K.
        • et al.
        Comparative effectiveness of oral antidiabetic drugs in preventing cardiovascular mortality and morbidity: a network meta-analysis.
        PLoS One. 2017; 12: e0177646
      4. McIntosh B, Cameron C, Singh SR, Yu C, Dolovich L, Houlden R. Choice of therapy in patients with type 2 diabetes inadequately controlled with metformin and a sulphonylurea: a systematic review and mixed-treatment comparison meta- analysis. Open Med 2012;6(2):e62–e74.

      5. Phung OJ, Scholle JM, Talwar M, Coleman CI. Effect of noninsulin antidiabetic drugs added to metformin therapy on glycemic control, weight gain, and hypoglycemia in type 2 diabetes. JAMA 2010;303(14):1410–8.37.

        • Esposito K.
        • Chiodini P.
        • Bellastella G.
        • Maiorino M.I.
        • Giugliano D.
        Proportion of patients at HbA1c target <7% with eight classes of antidiabetic drugs in type 2 diabetes: systematic review of 218 randomized controlled trials with 78 945 patients.
        Diabetes Obes Metab. 2012; 14: 228-233
        • Chan S.P.
        • Colagiuri S.
        Systematic review and meta-analysis of the efficacy and hypoglycemic safety of gliclazide versus other insulinotropic agents.
        Diabetes Res Clin Pract. 2015; 110: 75-81
        • Zhang Y.
        • Hong J.
        • Chi J.
        • Gu W.
        • Ning G.
        • Wang W.
        Head-to-head comparison of dipeptidyl peptidase-IV inhibitors and sulfonylureas – a meta-analysis from randomized clinical trials.
        Diabetes Metab Res Rev. 2014; 30: 241-256
        • Kahn S.E.
        • Haffner S.M.
        • Heise M.A.
        • Herman W.H.
        • Holman R.R.
        • Jones N.P.
        • et al.
        ADOPT Study Group. Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy.
        N Engl J Med. 2006; 355: 2427-2443
      6. Chen K, Kang D, Yu M, Zhang R, Zhang Y, Chen G, et al. Direct head-to-head comparison of glycaemic durability of dipeptidyl peptidase-4 inhibitors and sulphonylureas in patients with type 2 diabetes mellitus: a meta-analysis of long- term randomized controlled trials. Diabetes Obes Metab 2017. [Epub ahead of print].

        • Esposito K.
        • Chiodini P.
        • Maiorino M.I.
        • Bellastella G.
        • Capuano A.
        • Giugliano D.
        Glycaemic durability with dipeptidyl peptidase-4 inhibitors in type 2 diabetes: a systematic review and meta-analysis of long-term randomised controlled trials.
        BMJ Open. 2014; 4: e005442
        • Nathan D.M.
        • Buse J.B.
        • Kahn S.E.
        • Krause-Steinrauf H.
        • Larkin M.E.
        • Staten M.
        • et al.
        GRADE Study Research Group. Rationale and design of the glycemia reduction approaches in diabetes: a comparative effectiveness study (GRADE).
        Diabetes Care. 2013; 36: 2254-2261
      7. Ridderstråle M, Andersen KR, Zeller C, Kim G, Woerle HJ, Broedl UC; EMPA-REG H2H-SU trial investigators. Comparison of empagliflozin and glimepiride as add-on to metformin in patients with type 2 diabetes: a 104-week randomised, active-controlled, double-blind, phase 3 trial. Lancet Diabetes Endocrinol 2014;2(9):691–700.

        • Del Prato S.
        • Nauck M.
        • Durán-Garcia S.
        • Maffei L.
        • Rohwedder K.
        • Theuerkauf A.
        • et al.
        Long-term glycaemic response and tolerability of dapagliflozin versus a sulphonylurea as add-on therapy to metformin in patients with type 2 diabetes: 4-year data.
        Diabetes Obes Metab. 2015; 17: 581-590
        • Home P.D.
        • Pocock S.J.
        • Beck-Nielsen H.
        • Curtis P.S.
        • Gomis R.
        Hanefeld M, et al.: for the RECORD Study Team. Rosiglitazone evaluated for cardiovascular outcomes in oral agent combination therapy for type 2 diabetes (RECORD):a multicentre, randomised, open-label trial.
        Lancet. 2009; 373: 2125-2135
        • Nichols G.A.
        • Gomez-Caminero A.
        Weight changes following the initiation of new anti-hyperglycaemic therapies.
        Diabetes Obes Metab. 2007; 9: 96-102
        • Turner R.
        • Cull C.
        • Holman R.
        United Kingdom Prospective Diabetes Study 17: A 9-year update of a randomized, controlled trial on the effect of improved metabolic control on complications in non-insulin-dependent diabetes mellitus.
        Ann Intern Med. 1996; 124: 136-145
        • Zoungas S.
        • Chalmers J.
        • Kengne A.P.
        • Pillai A.
        • Billot L.
        • de Galan B.
        • et al.
        The efficacy of lowering glycated haemoglobin with a gliclazide modified release-based intensive glucose lowering regimen in the ADVANCE trial.
        Diabetes Res Clin Pract. 2010; 89: 126-133
        • Holstein A.
        • Plaschke A.
        • Egberts E.H.
        Lower incidence of severe hypoglycemia in patients with type 2 diabetes treated with glimepiride versus glibenclamide.
        Diabetes Metab Res Rev. 2001; 17: 467-473
        • Gangji A.S.
        • Cukierman T.
        • Gerstein H.C.
        • Goldsmith C.H.
        • Clase C.M.
        A systematic review and meta-analysis of hypoglycemia and cardiovascular events: a comparison of glyburide with other secretagogues and with insulin.
        Diabetes Care. 2007; 30: 389-394
        • Schopman J.E.
        • Simon A.C.
        • Hoefnagel S.J.
        • Hoekstra J.B.
        • Scholten R.J.
        • Holleman F.
        The incidence of mild and severe hypoglycaemia in patients with type 2 diabetes mellitus treated with sulfonylureas: a systematic review and meta-analysis.
        Diabetes Metab Res Rev. 2014; 30: 11-22
        • Tessier D.
        • Dawson K.
        • Tétrault J.P.
        • Bravo G.
        • Meneilly G.S.
        Glibenclamide vs gliclazide in type 2 diabetes of the elderly.
        Diabet Med. 1994; 11: 974-980
        • Holstein A.
        • Plaschke A.
        • Hammer C.
        • Egberts E.H.
        Characteristics and time course of severe glimepiride- versus glibenclamide-induced hypoglycaemia.
        Eur J Clin Pharmacol. 2003; 59: 91-97
        • Andersen S.E.
        • Christensen M.
        Hypoglycaemia when adding sulphonylurea to metformin: a systematic review and network meta-analysis.
        Br J Clin Pharmacol. 2016; 82: 1291-1302
        • Schernthaner G.
        • Grimaldi A.
        • Di M.U.
        • Drzewoski J.
        • Kempler P.
        • Kvapil M.
        • et al.
        GUIDE study: double-blind comparison of once-daily gliclazide MR and glimepiride in type 2 diabetic patients.
        Eur J Clin Invest. 2004; 34: 535-542
        • Action to Control Cardiovascular Risk in Diabetes Study
        Group. Effects of intensive glucose lowering in type 2 diabetes.
        N Engl J Med. 2008; 358: 2545-2549
        • Duckworth W.
        • Abraira C.
        • Moritz T.
        • Reda D.
        • Emanuele N.
        • Reaven P.D.
        • et al.
        VADT Investigators. Glucose control and vascular complications in veterans with type 2 diabetes.
        N Engl J Med. 2009; 360: 129-139
        • Zoungas S.
        • Patel A.
        • Chalmers J.
        • de Galan B.E.
        • Li Q.
        • Billot L.
        • et al.
        ADVANCE Collaborative Group. Severe hypoglycemia and risks of vascular events and death.
        N Engl J Med. 2010; 363: 1410-1418
        • Monami M.
        • Iacomelli I.
        • Marchionni N.
        • Mannucci E.
        Dipeptidyl peptidase-4 inhibitors in type 2 diabetes: a meta-analysis of randomized clinical trials.
        Nutr Metab Cardiovasc Dis. 2010; 20: 224-225
        • Vasilakou D.
        • Karagiannis T.
        • Athanasiadou E.
        • Mainou M.
        • Liakos A.
        • Bekiari E.
        • et al.
        Sodium-glucose cotransporter 2 inhibitors for type 2 diabetes: a systematic review and meta-analysis.
        Ann Intern Med. 2013; 159: 262-274
        • Scheen A.J.
        Pharmacokinetic considerations for the treatment of diabetes in patients with chronic kidney disease.
        Expert Opin Drug Metab Toxicol. 2013; 9: 529-550
        • Perkovic V.
        • Heerspink H.L.
        • Chalmers J.
        • Woodward M.
        • Jun M.
        • Li Q.
        • et al.
        ADVANCE Collaborative Group. Intensive glucose control improves kidney outcomes in patients with type 2 diabetes.
        Kidney Int. 2013; 83: 517-523
      8. Health and Social Care Information Centre. Prescription Cost Analysis England 2016. NHS Digital 2017. Available from: [Last accessed 15 June 2017].

        • Zhang Y.
        • McCoy R.G.
        • Mason J.E.
        • Smith S.A.
        • Shah N.D.
        • Denton B.T.
        Second-line agents for glycemic control for type 2 diabetes: are newer agents better?.
        Diabetes Care. 2014; 37: 1338-1345
        • Jacob L.
        • von Vultee C.
        • Kostev K.
        Prescription patterns and the cost of antihyperglycemic drugs in patients with type 2 diabetes mellitus in Germany.
        J Diabetes Sci Technol. 2017; 11: 123-127
        • American Diabetes Association
        9. Cardiovascular disease and risk management: standards of medical care in diabetes-2018.
        Diabetes Care. 2018; 41: S86-S104
      9. National Institute for Health and Care Excellence. Type 2 diabetes in adults: management. Clinical Guideline Update (NG28). Methods, evidence and recommendations; 2015. Available from: [Last accessed May 2017].

        • Inzucchi S.E.
        • Bergenstal R.M.
        • Buse J.B.
        • Diamant M.
        • Ferrannini E.
        • Nauck M.
        • et al.
        Management of hyperglycemia in type 2 diabetes, 2015: a patient-centered approach: update to a position statement of the American Diabetes Association and the European Association for the Study of Diabetes.
        Diabetes Care. 2015; 38: 140-149
        • Garber A.J.
        • Abrahamson M.J.
        • Barzilay J.I.
        • Blonde L.
        • Bloomgarden Z.T.
        • Bush M.A.
        • et al.
        American Association of Clinical Endocrinologists (AACE); American College of Endocrinology (ACE). Consensus statement by the American Association of Clinical Endocrinologists and American College of Endocrinology on the comprehensive type 2 diabetes management algorithm – 2016 Executive Summary.
        Endocr Pract. 2016; 22: 84-113
        • Rutten G.
        • de Grauw W.
        • Nijpels G.
        • Houweling B.
        • van de Laar F.
        • Bilo H.
        • et al.
        NHG- Standaard Diabetes mellitus type 2 (derde herziening).
        Huisarts Wet. 2013; 56: 512-525
      10. Australian Diabetes Society. A new blood glucose management algorithm for type 2 diabetes. A position statement of the Australian Diabetes Society. Australia: Australian Diabetes Society; 2016. [Online] [accessed 11 May 2017].

      11. Associazione Medici Diabetologi (AMD), Società Italiana di Diabetologia (SID). Standard italiani per la cura del diabete mellito; 2014. Available from:

      12. SEMDSA Type 2 Diabetes Guidelines Expert Committee. SEMDSA 2017 Guidelines for the Management of Type 2 diabetes mellitus. JEMDSA 2017; 22(1)(Supplement 1):S1–S196.

      13. KDOQI. KDOQI clinical practice guidelines and clinical practice recommendations for diabetes and chronic kidney disease. Am J Kidney Dis 2007;49(2 suppl 2):S12–S154.

      14. World Health Organization. WHO Model List of Essential Medicines. 20th List. March 2017, updated August 2017.

        • Kalra S.
        • Aamir A.H.
        • Raza A.
        • Das A.K.
        • Azad Khan A.K.
        • Shrestha D.
        • et al.
        Place of sulfonylureas in the management of type 2 diabetes mellitus in South Asia: A consensus statement.
        Indian J Endocrinol Metab. 2015; 19: 577-596
        • Clinical Practice Guidelines Committee
        Canadian Diabetes Association 2013 clinical practice guidelines for the prevention and management of diabetes in Canada.
        Can J Diabetes. 2013; 37: A3-A13
        • Pearson E.R.
        • Liddell W.G.
        • Shepherd M.
        • Corrall R.J.
        • Hattersley A.T.
        Sensitivity to sulphonylureas in patients with hepatocyte nuclear factor-1alpha gene mutations: evidence for pharmacogenetics in diabetes.
        Diabet Med. 2000; 17: 543-545
        • Pearson E.R.
        • Starkey B.J.
        • Powell R.J.
        • Gribble F.M.
        • Clark P.M.
        • Hattersley A.T.
        Genetic cause of hyperglycaemia and response to treatment in diabetes.
        Lancet. 2003; 362: 1275-1281
        • Rubio-Cabezas O.
        • Hattersley A.T.
        • Njølstad P.R.
        • Mlynarski W.
        • Ellard S.
        • White N.
        • et al.
        International Society for Pediatric and Adolescent Diabetes. ISPAD Clinical Practice Consensus Guidelines 2014. The diagnosis and management of monogenic diabetes in children and adolescents.
        Pediatr Diabetes. 2014; 15: 47-64
        • Salti I.
        • Benard E.
        • Detournay B.
        • Bianchi-Biscay M.
        • Le Brigand C.
        • Voinet C.
        • et al.
        the EPIDIAR Study Group: a population-based study of diabetes and its characteristics during the fasting month of Ramadan in 13 countries: results of the Epidemiology of Diabetes and Ramadan 1422/2001 (EPIDIAR) study.
        Diabetes Care. 2004; 27: 2306-2311
      15. International Diabetes Federation (IDF), in collaboration with the Diabetes and Ramadan (DAR) International Alliance. Diabetes and Ramadan: Practical Guidelines. International Diabetes Federation; 2016.

        • Al Sifri S.
        • Basiounny A.
        • Echtay A.
        • et al.
        2010 Ramadan Study Group. The incidence of hypoglycaemia in Muslim patients with type 2 diabetes treated with sitagliptin or a sulphonylurea during Ramadan: a randomised trial.
        Int J Clin Pract. 2011; 65: 1132-1140
        • Aravind S.R.
        • Ismail S.B.
        • Balamurugan R.
        • Gupta J.B.
        • Wadhwa T.
        • Loh S.M.
        • et al.
        Hypoglycemia in patients with type 2 diabetes from India and Malaysia treated with sitagliptin or a sulfonylurea during Ramadan: a randomized, pragmatic study.
        Curr Med Res Opin. 2012; 28: 1289-1296
        • Hassanein M.
        • Abdallah K.
        • Schweizer A.
        A double-blind, randomized trial, including frequent patient-physician contacts and Ramadan-focused advice, assessing vildagliptin and gliclazide in patients with type 2 diabetes fasting during Ramadan: the STEADFAST study.
        Vasc Health Risk Manag. 2014; 10: 319-326
        • Bailey R.A.
        • Wang Y.
        • Zhu V.
        • Rupnow M.F.
        Chronic kidney disease in US adults with type 2 diabetes: an updated national estimate of prevalence based on Kidney Disease: Improving Global Outcomes (KDIGO) staging.
        BMC Res Notes. 2014; 2: 415
        • Moen M.F.
        • Zhan M.
        • Hsu V.D.
        • Walker L.D.
        • Einhorn L.M.
        • Seliger S.L.
        • et al.
        Frequency of hypoglycemia and its significance in chronic kidney disease.
        Clin J Am Soc Nephrol. 2009; 4: 1121-1127
        • Ioannidis I.
        Diabetes treatment in patients with renal disease: Is the landscape clear enough?.
        World J Diabetes. 2014; 5: 651-658
        • Scheen A.J.
        Pharmacokinetics and clinical use of incretin-based therapies in patients with chronic kidney disease and type 2 diabetes.
        Clin Pharmacokinet. 2015; 54: 1-21
      16. US Food and Drug Administration. FDA drug safety communication: FDA strengthens kidney warnings for diabetes medicines canagliflozin (Invokana, Invokamet) and dapagliflozin (Farxiga, Xigduo XR). Available from: [Last accessed 17 March 2018].

        • Song D.K.
        • Ashcroft F.M.
        Glimepiride block of cloned beta-cell, cardiac and smooth muscle KATP channels.
        Br J Pharmacol. 2001; 133: 193-199
        • Gribble F.M.
        • Reimann F.
        Differential selectivity of insulin secretagogues: mechanisms, clinical implications, and drug interactions.
        J Diabetes Complications. 2003; 17: 11-15
        • Gribble F.M.
        • Ashcroft F.M.
        Differential sensitivity of beta-cell and extrapancreatic K(ATP) channels to gliclazide.
        Diabetologia. 1999; 42: 845-848
        • Russ U.
        • Kühner P.
        • Prager R.
        • Stephan D.
        • Bryan J.
        • Quast U.
        Incomplete dissociation of glibenclamide from wild-type and mutant pancreatic K ATP channels limits their recovery from inhibition.
        Br J Pharmacol. 2009; 156: 354-361
        • Gribble F.M.
        • Ashcroft F.M.
        Sulfonylurea sensitivity of adenosine triphosphate- sensitive potassium channels from beta cells and extrapancreatic tissues.
        Metabolism. 2000; 49: 3-6