Pathophysiological changes after lipopolysaccharide-induced acute inflammation in a type 2 diabetic rat model versus normal controls

Published:February 11, 2018DOI:


      • We explore a protective effect in diabetics of hyperglycemia in critical illness.
      • It’s the first to investigate the influence of diabetes on the outcome of sepsis.
      • Two mechanisms for the protective effect are proposed.



      The present study aimed to explore the mechanism of a potential beneficial effect of pre-existing diabetes in acute hyperglycemia during critical illness.


      Pathophysiological changes including blood glucose variability, changes of inflammatory and oxidative stress responses after lipopolysaccharide (LPS)-induced acute infection were compared between type 2 diabetic rat model (GK rats) and normal controls (Wistar rats).


      After LPS injection, Wistar rats showed serious infective symptoms while GK rats did not. Blood glucose (BG) levels were significantly elevated in both GK and Wistar rats; however, compared to Wistar rats, GK rats had lower BG variability, smaller increases in the serum tumor necrosis factor (TNF)-α and interleukin (IL)-6 levels, a larger increase in the serum IL-10 level, and a smaller decrease in the IκB-α protein level of lung tissue. Serum malondialdehyde (MDA) levels increased and serum total antioxidant capacity (T-AOC) levels decreased for both GK and Wistar rats.


      We found diabetes was associated with adaptive changes at the cellular level that might actually be protective in acute hyperglycemia–mediated damage during sepsis. Chronic exposure to hyperglycemia potentially reduced the acute deleterious effects of acute hyperglycemia on septic mortality by decreasing BG variability, blunting the pro-inflammatory response and elevating the anti-inflammatory response.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Diabetes Research and Clinical Practice
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Ren X.
        • Zheng S.
        • Han T.
        • Chen Y.
        • Liu W.
        • Hou P.C.
        • et al.
        Hyperglycemia and outcomes of medical intensive care unit patients with and without a history of diabetes mellitus in a Chinese population.
        Intens Care Med. 2017; 43: 144-145
        • Graham B.B.
        • Keniston A.
        • Gajic O.
        • Trillo Alvarez C.A.
        • Medvedev S.
        • Douglas I.S.
        Diabetes mellitus does not adversely affect outcomes from a critical illness.
        Crit Care Med. 2010; 38: 16-24
      1. Vincent JL, Preiser JC, Sprung CL, Moreno R, Sakr Y. Insulin-treated diabetes is not associated with increased mortality in critically ill patients. Critical care (London, England). 2010;14:R12.

        • Stegenga M.E.
        • Vincent J.L.
        • Vail G.M.
        • Xie J.
        • Haney D.J.
        • Williams M.D.
        • et al.
        Diabetes does not alter mortality or hemostatic and inflammatory responses in patients with severe sepsis.
        Crit Care Med. 2010; 38: 539-545
      2. Esper AM, Moss M, Martin GS. The effect of diabetes mellitus on organ dysfunction with sepsis: an epidemiological study. Critical care (London, England). 2009;13:R18.

        • Krinsley J.S.
        • Fisher M.
        The diabetes paradox: diabetes is not independently associated with mortality in critically ill patients.
        Hospital Practice. 1995; 2012: 31-35
        • Falciglia M.
        • Freyberg R.W.
        • Almenoff P.L.
        • D'Alessio D.A.
        • Render M.L.
        Hyperglycemia-related mortality in critically ill patients varies with admission diagnosis.
        Crit Care Med. 2009; 37: 3001-3009
        • Tayek C.J.
        • Tayek J.A.
        Diabetes patients and non-diabetic patients intensive care unit and hospital mortality risks associated with sepsis.
        World J Diabetes. 2012; 3: 29-34
        • Plummer M.P.
        • Bellomo R.
        • Cousins C.E.
        • Annink C.E.
        • Sundararajan K.
        • Reddi B.A.
        • et al.
        Dysglycaemia in the critically ill and the interaction of chronic and acute glycaemia with mortality.
        Intens Care Med. 2014; 40: 973-980
        • van den Berghe G.
        • Wouters P.
        • Weekers F.
        • Verwaest C.
        • Bruyninckx F.
        • Schetz M.
        • et al.
        Intensive insulin therapy in critically ill patients.
        New England J Med. 2001; 345: 1359-1367
        • Van den Berghe G.
        • Wilmer A.
        • Hermans G.
        • Meersseman W.
        • Wouters P.J.
        • Milants I.
        • et al.
        Intensive insulin therapy in the medical ICU.
        New England J Med. 2006; 354: 449-461
        • Van den Berghe G.
        • Wouters P.J.
        • Bouillon R.
        • Weekers F.
        • Verwaest C.
        • Schetz M.
        • et al.
        Outcome benefit of intensive insulin therapy in the critically ill: insulin dose versus glycemic control.
        Crit Care Med. 2003; 31: 359-366
        • Van den Berghe G.
        • Wilmer A.
        • Milants I.
        • Wouters P.J.
        • Bouckaert B.
        • Bruyninckx F.
        • et al.
        Intensive insulin therapy in mixed medical/surgical intensive care units: benefit versus harm.
        Diabetes. 2006; 55: 3151-3159
        • Clement S.
        • Braithwaite S.S.
        • Magee M.F.
        • Ahmann A.
        • Smith E.P.
        • Schafer R.G.
        • et al.
        Management of diabetes and hyperglycemia in hospitals.
        Diabetes Care. 2004; 27: 553-591
      3. Executive summary: standards of medical care in diabetes–2014. Diabetes care. 2014;37 Suppl 1:S5–13.

        • Perel A.
        • Pizov R.
        • Cotev S.
        Respiratory variations in the arterial pressure during mechanical ventilation reflect volume status and fluid responsiveness.
        Intens Care Med. 2014; 40: 798-807
        • Dalabih M.
        • Rischard F.
        • Mosier J.M.
        What's new: the management of acute right ventricular decompensation of chronic pulmonary hypertension.
        Intens Care Med. 2014; 40: 1930-1933
        • Egi M.
        • Bellomo R.
        • Stachowski E.
        • French C.J.
        • Hart G.
        Variability of blood glucose concentration and short-term mortality in critically ill patients.
        Anesthesiology. 2006; 105: 244-252
        • Donati A.
        • Damiani E.
        • Domizi R.
        • Botticelli L.
        • Castagnani R.
        • Gabbanelli V.
        • et al.
        Glycaemic variability, infections and mortality in a medical-surgical intensive care unit.
        Critic Care Resuscitation: J Aust Academy Critic Care Med. 2014; 16: 13-23
        • Harbarth S.
        • Holeckova K.
        • Froidevaux C.
        • Pittet D.
        • Ricou B.
        • Grau G.E.
        • et al.
        Diagnostic value of procalcitonin, interleukin-6, and interleukin-8 in critically ill patients admitted with suspected sepsis.
        Am J Respir Crit Care Med. 2001; 164: 396-402
        • Heesen M.
        • Bloemeke B.
        • Heussen N.
        • Kunz D.
        Can the interleukin-6 response to endotoxin be predicted? Studies of the influence of a promoter polymorphism of the interleukin-6 gene, gender, the density of the endotoxin receptor CD14, and inflammatory cytokines.
        Crit Care Med. 2002; 30: 664-669
        • Soop M.
        • Duxbury H.
        • Agwunobi A.O.
        • Gibson J.M.
        • Hopkins S.J.
        • Childs C.
        • et al.
        Euglycemic hyperinsulinemia augments the cytokine and endocrine responses to endotoxin in humans.
        Am J Physiol Endocrinol Metab. 2002; 282: E1276-E1285
        • Ritchie D.G.
        Interleukin 6 stimulates hepatic glucose release from prelabeled glycogen pools.
        Am J Physiol. 1990; 258: E57-E64
        • Morohoshi M.
        • Fujisawa K.
        • Uchimura I.
        • Numano F.
        Glucose-dependent interleukin 6 and tumor necrosis factor production by human peripheral blood monocytes in vitro.
        Diabetes. 1996; 45: 954-959
        • Ertel W.
        • Kremer J.P.
        • Kenney J.
        • Steckholzer U.
        • Jarrar D.
        • Trentz O.
        • et al.
        Downregulation of proinflammatory cytokine release in whole blood from septic patients.
        Blood. 1995; 85: 1341-1347
        • Barnes P.J.
        • Karin M.
        Nuclear factor-kappaB: a pivotal transcription factor in chronic inflammatory diseases.
        New England J Med. 1997; 336: 1066-1071
        • Pahl H.L.
        Activators and target genes of Rel/NF-kappaB transcription factors.
        Oncogene. 1999; 18: 6853-6866
        • Bohrer H.
        • Qiu F.
        • Zimmermann T.
        • Zhang Y.
        • Jllmer T.
        • Mannel D.
        • et al.
        Role of NFkappaB in the mortality of sepsis.
        J Clin Investig. 1997; 100: 972-985
        • Arnalich F.
        • Garcia-Palomero E.
        • Lopez J.
        • Jimenez M.
        • Madero R.
        • Renart J.
        • et al.
        Predictive value of nuclear factor kappaB activity and plasma cytokine levels in patients with sepsis.
        Infect Immun. 2000; 68: 1942-1945
        • Paterson R.L.
        • Galley H.F.
        • Dhillon J.K.
        • Webster N.R.
        Increased nuclear factor kappa B activation in critically ill patients who die.
        Crit Care Med. 2000; 28: 1047-1051
        • Yorek M.A.
        • Dunlap J.A.
        Effect of increased concentration of D-glucose or L-fucose on monocyte adhesion to endothelial cell monolayers and activation of nuclear factor-kappaB.
        Metab Clin Exp. 2002; 51: 225-234
      4. Marik PE, Varon J. Sepsis: state of the art. Disease-a-month: DM. 2001;47:465–532.

        • Bone R.C.
        • Grodzin C.J.
        • Balk R.A.
        Sepsis: a new hypothesis for pathogenesis of the disease process.
        Chest. 1997; 112: 235-243
        • Brownlee M.
        Biochemistry and molecular cell biology of diabetic complications.
        Nature. 2001; 414: 813-820
        • Noda A.
        • Kinoshita K.
        • Sakurai A.
        • Matsumoto T.
        • Mugishima H.
        • Tanjoh K.
        Hyperglycemia and lipopolysaccharide decrease depression effect of interleukin 8 production by hypothermia: an experimental study with endothelial cells.
        Intens Care Med. 2008; 34: 109-115
        • Ceriello A.
        • Bortolotti N.
        • Motz E.
        • Pieri C.
        • Marra M.
        • Tonutti L.
        • et al.
        Meal-induced oxidative stress and low-density lipoprotein oxidation in diabetes: the possible role of hyperglycemia.
        Metab Clin Exp. 1999; 48: 1503-1508
        • Olson D.E.
        • Rhee M.K.
        • Herrick K.
        • Ziemer D.C.
        • Twombly J.G.
        • Phillips L.S.
        Screening for diabetes and pre-diabetes with proposed A1C-based diagnostic criteria.
        Diabetes Care. 2010; 33: 2184-2189
        • Shaw G.M.
        • Pretty C.G.
        • Geoffrey Chase J.
        Tight computerized versus conventional glucose control in the ICU: a randomized controlled trial.
        Intens Care Med. 2014; 40 (Comment on Kalfon et al): 922
        • Antonelli M.
        • Bonten M.
        • Cecconi M.
        • Chastre J.
        • Citerio G.
        • Conti G.
        • et al.
        Year in review in intensive care medicine 2012: I. Neurology and neurointensive care, epidemiology and nephrology, biomarkers and inflammation, nutrition, experimentals.
        Intens Care Med. 2013; 39: 232-246
        • Van den Berghe G.
        What's new in glucose control in the ICU?.
        Intens Care Med. 2013; 39: 823-825