Advertisement

HbA1c variability in type 2 diabetes is associated with the occurrence of new-onset albuminuria within three years

Published:February 13, 2017DOI:https://doi.org/10.1016/j.diabres.2017.02.007

      Highlights

      • Study of HbA1c variability (HbA1c-CV) and 3 year albuminuria risk in type 2 diabetes.
      • HbA1c-CV independently associated with 3 year albuminuria risk.
      • Including HbA1c-CV significantly improves 3 year albuminuria prediction.
      • HbA1c-CV half as important as mean HbA1c, hypertension and baseline urine albumin.

      Abstract

      Aims

      To evaluate the association between HbA1c coefficient of variation (HbA1c-CV) and 3-year new-onset albuminuria risk.

      Methods

      A retrospective cohort study involving 716 normoalbuminuric type 2 diabetes patients was conducted between 2010 and 2014. HbA1c-CV was used to categorize patients into low, moderate or high variability groups. Multivariate logistic models were constructed and validated. Integrated discrimination (IDI) and net reclassification (NRI) improvement indices were used to quantify the added predictive value of HbA1c-CV.

      Results

      The mean age of our cohort was 56.1 ± 12.9 years with a baseline HbA1c of 8.3 ± 1.3%. Over 3-years of follow-up, 35.2% (n = 252) developed albuminuria. An incremental risk of albuminuria was observed with moderate (6.68–13.43%) and high (above 13.44%) HbA1c-CV categories demonstrating adjusted odds ratios of 1.63 (1.12–2.38) and 3.80 (2.10–6.97) for 3-year new-onset albuminuria, respectively. Including HbA1c-CV for 3-year new-onset albuminuria prediction improved model discrimination (IDI: 0.023, NRI: 0.293, p < 0.05). The final model had a C-statistic of 0.760 ± 0.018 on validation.

      Conclusion

      HbA1c-CV improves 3-year prediction of new-onset albuminuria. Together with mean HbA1c, baseline urine albumin-to-creatinine ratio and presence of hypertension, accurate 3-year new-onset albuminuria prediction may be possible.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Diabetes Research and Clinical Practice
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Heerspink H.J.
        • Kropelin T.F.
        • Hoekman J.
        • de Zeeuw D.
        Drug-induced reduction in albuminuria is associated with subsequent renoprotection: a meta-analysis.
        J Am Soc Nephrol. 2015; 26: 2055-2064
        • Lo C.
        • Zoungas S.
        Intensive glucose control in patients with type 2 diabetes is associated with a reduction in albuminuria and may be associated with reduced end-stage renal disease.
        Evid Based Med. 2013; 18: 105-106
        • American Diabetes Association
        Standards of medical care in diabetes-2016 abridged for primary care providers.
        Clin Diabetes. 2016; 34: 3-21
        • Collins A.J.
        • Foley R.N.
        • Chavers B.
        • Gilbertson D.
        • Herzog C.
        • Johansen K.
        • et al.
        United States renal data system 2011 annual data report: atlas of chronic kidney disease & end-stage renal disease in the United States.
        Am J Kidney Dis. 2012; 59 (e1–420)
        • Blech I.
        • Katzenellenbogen M.
        • Katzenellenbogen A.
        • Wainstein J.
        • Rubinstein A.
        • Harman-Boehm I.
        • et al.
        Predicting diabetic nephropathy using a multifactorial genetic model.
        PLoS One. 2011; 6: e18743
        • Jardine M.J.
        • Hata J.
        • Woodward M.
        • Perkovic V.
        • Ninomiya T.
        • Arima H.
        • et al.
        Prediction of kidney-related outcomes in patients with type 2 diabetes.
        Am J Kidney Dis. 2012; 60: 770-778
        • Echouffo-Tcheugui J.B.
        • Kengne A.P.
        Risk models to predict chronic kidney disease and its progression: a systematic review.
        PLoS Med. 2012; 9: e1001344
        • Hsu C.C.
        • Chang H.Y.
        • Huang M.C.
        • Hwang S.J.
        • Yang Y.C.
        • Lee Y.S.
        • et al.
        HbA1c variability is associated with microalbuminuria development in type 2 diabetes: a 7-year prospective cohort study.
        Diabetologia. 2012; 55: 3163-3172
        • Luk A.O.
        • Ma R.C.
        • Lau E.S.
        • Yang X.
        • Lau W.W.
        • Yu L.W.
        • et al.
        Risk association of HbA1c variability with chronic kidney disease and cardiovascular disease in type 2 diabetes: prospective analysis of the Hong Kong Diabetes Registry.
        Diabetes Metab Res Rev. 2013; 29: 384-390
        • Sugawara A.
        • Kawai K.
        • Motohashi S.
        • Saito K.
        • Kodama S.
        • Yachi Y.
        • et al.
        HbA(1c) variability and the development of microalbuminuria in type 2 diabetes: Tsukuba Kawai diabetes registry 2.
        Diabetologia. 2012; 55: 2128-2131
        • Gorst C.
        • Kwok C.S.
        • Aslam S.
        • Buchan I.
        • Kontopantelis E.
        • Myint P.K.
        • et al.
        Long-term glycemic variability and risk of adverse outcomes: a systematic review and meta-analysis.
        Diabetes Care. 2015; 38: 2354-2369
        • Cummings D.M.
        • Larsen L.C.
        • Doherty L.
        • Lea C.S.
        • Holbert D.
        Glycemic control patterns and kidney disease progression among primary care patients with diabetes mellitus.
        J Am Board Fam Med. 2011; 24: 391-398
        • Lin C.C.
        • Chen C.C.
        • Chen F.N.
        • Li C.I.
        • Liu C.S.
        • Lin W.Y.
        • et al.
        Risks of diabetic nephropathy with variation in hemoglobin A1c and fasting plasma glucose.
        Am J Med. 2013; 126 (e1–10)
        • Penno G.
        • Solini A.
        • Bonora E.
        • Fondelli C.
        • Orsi E.
        • Zerbini G.
        • et al.
        HbA1c variability as an independent correlate of nephropathy, but not retinopathy, in patients with type 2 diabetes: the Renal Insufficiency And Cardiovascular Events (RIACE) Italian multicenter study.
        Diabetes Care. 2013; 36: 2301-2310
        • Glauber H.S.
        • Rishe N.
        • Karnieli E.
        Introduction to personalized medicine in diabetes mellitus.
        Rambam Maimonides Med J. 2014; 5: e0002
        • Chamberlain J.J.
        • Rhinehart A.S.
        • Shaefer Jr, C.F.
        • Neuman A.
        Diagnosis and management of diabetes: synopsis of the 2016 American diabetes association standards of medical care in diabetes.
        Ann Intern Med. 2016; 164: 542-552
        • Kidney disease: improving global outcomes (KDIGO) CKD work group. KDIGO 2012
        Clinical practice guideline for the evaluation and management of chronic kidney disease.
        Kidney International Supplement. 2013; 3: 33
        • Wu A.Y.
        • Kong N.C.
        • de Leon F.A.
        • Pan C.Y.
        • Tai T.Y.
        • Yeung V.T.
        • et al.
        An alarmingly high prevalence of diabetic nephropathy in Asian type 2 diabetic patients: the MicroAlbuminuria Prevalence (MAP) Study.
        Diabetologia. 2005; 48: 17-26
        • Low S.K.
        • Sum C.F.
        • Yeoh L.Y.
        • Tavintharan S.
        • Ng X.W.
        • Lee S.B.
        • et al.
        Prevalence of chronic kidney disease in adults with type 2 diabetes mellitus.
        Ann Acad Med Singapore. 2015; 44: 164-171
        • Heng B.H.
        • Sun Y.
        • Cheah J.T.
        • Jong M.
        The Singapore national healthcare group diabetes registry–descriptive epidemiology of type 2 diabetes mellitus.
        Ann Acad Med Singapore. 2010; 39: 348-352
        • Robin X.
        • Turck N.
        • Hainard A.
        • Tiberti N.
        • Lisacek F.
        • Sanchez J.C.
        • et al.
        PROC: an open-source package for R and S+ to analyze and compare ROC curves.
        BMC Bioinf. 2011; 12: 77
        • Pencina M.J.
        • D'Agostino R.B.
        • Vasan R.S.
        Statistical methods for assessment of added usefulness of new biomarkers.
        Clin Chem Lab Med. 2010; 48: 1703-1711
        • Moons K.G.
        • Kengne A.P.
        • Woodward M.
        • Royston P.
        • Vergouwe Y.
        • Altman D.G.
        • et al.
        Risk prediction models: I. Development, internal validation, and assessing the incremental value of a new (bio)marker.
        Heart. 2012; 98: 683-690
        • Gregg E.W.
        • Li Y.
        • Wang J.
        • Burrows N.R.
        • Ali M.K.
        • Rolka D.
        • et al.
        Changes in diabetes-related complications in the United States, 1990–2010.
        N Engl J Med. 2014; 370: 1514-1523
        • Grace B.S.
        • Clayton P.
        • McDonald S.P.
        Increases in renal replacement therapy in Australia and New Zealand: understanding trends in diabetic nephropathy.
        Nephrology (Carlton). 2012; 17: 76-84
        • Tang S.C.
        Diabetic nephropathy: a global and growing threat.
        Hong Kong Med J. 2010; 16: 244-245
        • James M.T.
        • Hemmelgarn B.R.
        • Tonelli M.
        Early recognition and prevention of chronic kidney disease.
        Lancet. 2010; 375: 1296-1309
        • Pencina M.J.
        • D'Agostino R.B.
        • Pencina K.M.
        • Janssens A.C.
        • Greenland P.
        Interpreting incremental value of markers added to risk prediction models.
        Am J Epidemiol. 2012; 176: 473-481
        • Waden J.
        • Forsblom C.
        • Thorn L.M.
        • Gordin D.
        • Saraheimo M.
        • Groop P.H.
        A1C variability predicts incident cardiovascular events, microalbuminuria, and overt diabetic nephropathy in patients with type 1 diabetes.
        Diabetes. 2009; 58: 2649-2655
        • Kaplan W.
        • Afandi B.
        Blood glucose fluctuation during Ramadan fasting in adolescents with type 1 diabetes: findings of continuous glucose monitoring.
        Diabetes Care. 2015; 38: e162-e163
        • Hawkins R.C.
        Circannual variation in glycohemoglobin in Singapore.
        Clin Chim Acta. 2010; 411: 18-21
        • Siaw M.Y.
        • Chew D.E.
        • Dalan R.
        • Abdul Shakoor S.A.
        • Othman N.
        • Choo C.H.
        • et al.
        Evaluating the effect of Ramadan fasting on muslim patients with diabetes in relation to use of medication and lifestyle patterns: a prospective study.
        Int J Endocrinol. 2014; 2014: 308546
        • Pereira M.T.
        • Lira D.
        • Bacelar C.
        • Oliveira J.C.
        • de Carvalho A.C.
        Seasonal variation of haemoglobin A1c in a Portuguese adult population.
        Arch Endocrinol Metab. 2015; 59: 231-235
        • Kim Y.J.
        • Park S.
        • Yi W.
        • Yu K.S.
        • Kim T.H.
        • Oh T.J.
        • et al.
        Seasonal variation in hemoglobin a1c in korean patients with type 2 diabetes mellitus.
        J Korean Med Sci. 2014; 29: 550-555
        • Hill N.R.
        • Peters C.J.
        • Thompson R.J.
        • Matthews D.R.
        • Hindmarsh P.C.
        Cyclical variation in HbA1c values during the year: clinical and research implications.
        Diabetes Care. 2013; 36: e175-e176
        • Ricardo A.C.
        • Anderson C.A.
        • Yang W.
        • Zhang X.
        • Fischer M.J.
        • Dember L.M.
        • et al.
        Healthy lifestyle and risk of kidney disease progression, atherosclerotic events, and death in CKD: findings from the chronic renal insufficiency cohort (CRIC) study.
        Am J Kidney Dis. 2015; 65: 412-424
        • Sakura H.
        • Tanaka Y.
        • Iwamoto Y.
        Seasonal fluctuations of glycated hemoglobin levels in Japanese diabetic patients.
        Diabetes Res Clin Pract. 2010; 88: 65-70