Advertisement
Research Article| Volume 113, P160-170, March 2016

Download started.

Ok

Type 2 diabetes mellitus disease risk genes identified by genome wide copy number variation scan in normal populations

  • Author Footnotes
    1 These authors contributed equally to the work.
    ,
    Author Footnotes
    2 Tel.: +91 9035953408.
    Manasa Prabhanjan
    Footnotes
    1 These authors contributed equally to the work.
    2 Tel.: +91 9035953408.
    Affiliations
    Department of Studies in Genetics and Genomics, University of Mysore, Manasagangotri, Mysore 570006, Karnataka, India
    Search for articles by this author
  • Author Footnotes
    1 These authors contributed equally to the work.
    ,
    Author Footnotes
    3 Tel.: +91 9535692143.
    Raviraj V. Suresh
    Footnotes
    1 These authors contributed equally to the work.
    3 Tel.: +91 9535692143.
    Affiliations
    Genetics and Genomics Lab, Department of Studies in Genetics and Genomics, University of Mysore, Manasagangotri, Mysore 570006, Karnataka, India
    Search for articles by this author
  • Author Footnotes
    1 These authors contributed equally to the work.
    ,
    Author Footnotes
    4 Tel.: +91 9738401432.
    Megha N. Murthy
    Footnotes
    1 These authors contributed equally to the work.
    4 Tel.: +91 9738401432.
    Affiliations
    Genetics and Genomics Lab, Department of Studies in Genetics and Genomics, University of Mysore, Manasagangotri, Mysore 570006, Karnataka, India
    Search for articles by this author
  • Nallur B. Ramachandra
    Correspondence
    Corresponding author. Tel.: +91 821 2419781x888; fax: +91 821 2516056.
    Affiliations
    Genetics and Genomics Lab, Department of Studies in Genetics and Genomics, University of Mysore, Manasagangotri, Mysore 570006, Karnataka, India
    Search for articles by this author
  • Author Footnotes
    1 These authors contributed equally to the work.
    2 Tel.: +91 9035953408.
    3 Tel.: +91 9535692143.
    4 Tel.: +91 9738401432.
Published:January 13, 2016DOI:https://doi.org/10.1016/j.diabres.2015.12.015

      Highlights

      • CNV analysis was carried out on a total of 1715 individuals from 12 populations.
      • 34.4% of the total population to be under CNV burden for T2DM.
      • Eighty-three disease causal and associated genes were found under CNV influence.
      • Overlap studies with case cohorts revealed CNV influence on significant disease risk genes such as EGFR, E2F1, PPP1R3A, HLA and TSPAN8.

      Abstract

      Aims

      To identify the role of copy number variations (CNVs) on disease risk genes and its effect on disease phenotypes in type 2 diabetes mellitus (T2DM) in 12 random populations using high throughput arrays.

      Methods

      CNV analysis was carried out on a total of 1715 individuals from 12 populations, from ArrayExpress Archive of the European Bioinformatics Institute along with our subjects using Affymetrix Genome Wide SNP 6.0 array. CNV effect on T2DM genes were analyzed using several bioinformatics tools and a molecular protein interaction network was constructed to identify the disease mechanism altered by the CNVs.

      Results

      Analysis showed 34.4% of the total population to be under CNV burden for T2DM, with 83 disease causal and associated genes being under CNV influence. Hotspots were identified on chromosomes 22, 12, 6, 19 and 11.Overlap studies with case cohorts revealed significant disease risk genes such as EGFR, E2F1, PPP1R3A, HLA and TSPAN8.

      Conclusions

      CNVs play a significant role in predisposing T2DM in normal cohorts and contribute to the phenotypic effects. Thus, CNVs should be considered as one of the major contributors in predisposition of the disease.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Diabetes Research and Clinical Practice
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

      1. WHO Diabetes; 1999.

        • Prasad R.B.
        • Groop L.
        Genetics of type 2 diabetes—pitfalls and possibilities.
        Genes. 2015; 6: 87-123
        • Lyssenko V.
        • Laakso M.
        Genetic screening for the risk of type 2 diabetes worthless or valuable?.
        Diabetes Care. 2013; 36: S120-S126
        • Zarrei M.
        • MacDonald J.R.
        • Merico D.
        • Scherer S.W.
        A copy number variation map of the human genome.
        Nat Rev Genet. 2015; 16: 172-183
        • Inoue K.
        • Lupski J.R.
        Molecular mechanisms for genomic disorders.
        Annu Rev Genom Hum Genet. 2002; 3: 199-242
        • Veerappa A.M.
        • Lingaiah K.
        • Vishweswaraiah S.
        • Murthy M.N.
        • Suresh R.V.
        • Manjegowda D.S.
        • et al.
        Impact of copy number variations burden on coding genome in humans using integrated high resolution arrays.
        Genet Res. 2014; 96: e17
        • Wong K.K.
        • Dosanjh N.S.
        • Kimm L.R.
        • Cheng Z.
        • Horsman D.E.
        • MacAulay C.
        • et al.
        A comprehensive analysis of common copy-number variations in the human genome.
        Am J Hum Genet. 2007; 80: 91-104
        • Murea M.
        • Ma L.
        • Freedman B.I.
        Genetic and environmental factors associated with type 2 diabetes and diabetic vascular complications.
        Rev Diabet Stud. 2012; 9: 6-22
        • Gibb R.A.
        • Belmont J.W.
        • Hardenbol P.
        • Willis T.D.
        • Yu F.
        • Yang H.
        • et al.
        The international HapMap project.
        Nature. 2003; 426: 789-796
      2. Affymetrix Inc. Data Sheet: Genome Wide Human SNP Array 6.0; 2009.

      3. BirdSuite Algorithm. Available from 〈http://www.broad.mit.edu/mpg/birdsuite/birdseed.html〉 [accessed 13.02.13].

      4. White Paper: Affymetrix Canary Algorithm Version 1.0.; 2008, p. 1–7.

      5. Bozeman MT: Golden Helix, Inc. SNP & Variation Suite (Version 7.x) [Software]. Available from 〈http://www.goldenhelix.com〉 [accessed 13.01.13].

      6. Affymetrix Inc. Technical Note: Guide to Probe Logarithmic Intensity Error (PLIER) Estimation; 2005.

      7. Affymetrix Inc. White Paper: BRLMM-P: A Genotype Calling Method for the SNP Array 5.0; 2007.

      8. Affymetrix Inc. User manual: Genotyping Console Software 2.1; 2008.

        • Price A.L.
        • Patterson N.J.
        • Plenge R.M.
        • Weinblatt M.E.
        • Shadick N.A.
        • Reich D.
        Principal components analysis corrects for stratification in genome-wide association studies.
        Nat Genet. 2006; 38: 904-909
        • Chen E.Y.
        • Tan C.M.
        • Kou Y.
        • Duan Q.
        • Wang Z.
        • Meirelles G.V.
        • et al.
        Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool.
        BMC Bioinform. 2013; 14: 128
        • Zhang B.
        • Kirov S.
        • Snoddy J.
        WebGestalt: an integrated system for exploring gene sets in various biological contexts.
        Nucleic Acids Res. 2005; 33: W741-W748
      9. PA®, QIAGEN Redwood City 〈www.qiagen.com/ingenuity〉.

        • Butler J.L.
        • Locke M.E.O.
        • Hill K.A.
        • Daley M.
        HD-CNV: hotspot detector for copy number variants.
        Bioinformatics. 2013; 29: 262-263
        • Lekkerkerker C.G.
        Boland JC Representation of a finite graph by a set of intervals on the real line.
        Fundam Math. 1962; 51: 45-64
        • Krzywinski M.
        • Schein J.E.
        • Birol I.
        • Connors J.
        • Gascoyne R.
        • Horsman D.
        • et al.
        Circos: an information aesthetic for comparative genomics.
        Genome Res. 2009; 19: 1639-1645
        • Bae J.S.
        • Cheong H.S.
        • Kim J.H.
        • Park B.L.
        • Kim J.H.
        • Park T.J.
        • et al.
        The genetic effect of copy number variations on the risk of type 2 diabetes in a Korean population.
        Plos One. 2011; : e19091
        • Ramírez-Valverde A.G.
        • Antúnez-Ortiz D.L.
        • Méndez-Beleche A.
        • Flores-Alfaro E.
        • Ascencio-Montiel I.J.
        • Cruz M.
        Copy number variation: markers and predictors for type 2 diabetes.
        Rev Med Ins Mex Seguro Soc. 2014; 53: 348-355
        • Aitman T.J.
        • Dong R.
        • Schaeffeler E.
        • Schmalzl H.
        • Wehkamp J.
        • Bevins C.L.
        • et al.
        Copy number polymorphism in Fcgr3 predisposes to glomerulonephritis in rats and humans.
        Nature. 2006; 439: 851-855
        • Fellermann K.
        • Stange D.E.
        Chromosome 8 gene-cluster polymorphism with low human beta-defensin 2 gene copy number predisposes to Crohn disease of the colon.
        Am J Hum Genet. 2006; b79: 439-448
        • Park J.
        • Chen L.
        • Ratnashinge L.
        • Sellers T.A.
        • Tanner J.P.
        • Lee J.H.
        • et al.
        Deletion polymorphism of UDP-glucuronosyltransferase 2B17 and risk of prostate cancer in African American and Caucasian men.
        Cancer Epidemiol Biomark Prev. 2006; 15: 1473-1478
        • Fanciulli M.
        • Norsworthy P.J.
        FCGR3B copy number variation is associated with susceptibility to systemic, but not organ specific, autoimmunity.
        Nat Genet. 2007; 39: 721-723
        • Hollox E.J.
        • Huffmeier U.
        • Zeeuwen P.L.
        • Palla R.
        • Lascorz J.
        • Rodijk-Olthuis D.
        • et al.
        Psoriasis is associated with increased beta-defensin genomic copy number.
        Nat Genet. 2008; 40: 23-25
        • Nguyen D.Q.
        • Webber C.
        • Ponting C.P.
        Bias of selection on human copy-number variants.
        PLoS Genet. 2006; 2: e20
        • Girirajan S.
        • Brkanac Z.
        • Coe B.P.
        • Baker C.
        • Vives L.
        • Vu T.H.
        • et al.
        Relative burden of large CNVs on a range of neurodevelopmental phenotypes.
        PLoS Genet. 2011; 7: e1002334https://doi.org/10.1371/journal.pgen.1002334
        • Barrett J.C.
        • Clayton D.G.
        • Concannon P.
        • Akolkar B.
        • Cooper J.D.
        • Erlich H.A.
        • et al.
        Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes.
        Nat Genet. 2009; 41: 703-707
        • Craddock N.
        • Hurles M.E.
        • Cardin N.
        • Pearson R.D.
        • Plagnol V.
        • Robson S.
        • et al.
        Genome-wide association study of CNVs in 16,000 cases of eight common diseases and 3,000 shared controls.
        Nature. 2010; 464: 713-720