Research Article| Volume 113, P171-178, March 2016

Download started.


c-Abl contributes to glucose-promoted apoptosis via p53 signaling pathway in podocytes

Published:January 13, 2016DOI:


      • Expression of c-Abl in podocytes is up-regulated in the condition of high glucose.
      • c-Abl contributes to high glucose-induced apoptosis of podocytes.
      • Pro-apoptosis factor p53 is involved in c-Abl signaling in the process of podocytes apoptosis.



      To investigate the role of the non-receptor tyrosine kinase c-Abl in high glucose-induced podocyte injury and its possible signal transduction pathway.


      Sixteen C57BL/6 mice were randomly assigned to a group with diabetes and a normal control group. Subsequently, differentiated mouse podocytes were exposed to high-glucose conditions, and podocyte apoptosis was then assessed by flow cytometry and Hoechst 33258 staining. Western blot and immunofluorescence assay were used to measure c-Abl expression. Co-immunoprecipitation assay was used and c-Abl siRNA was applied to evaluate the interaction between c-Abl and p53.


      High glucose promotes podocyte apoptosis. The c-Abl expression in podocytes was increased after exposure to high glucose, stimulating the p53 signaling pathway. Conversely, treatment with c-Abl siRNA restored high glucose-promoted podocyte apoptosis and resulted in the reduction of p53 expression.


      c-Abl contributes to high glucose-induced podocyte apoptosis via p53 signaling pathway.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Diabetes Research and Clinical Practice
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Shankland S.J.
        The podocyte's response to injury: role in proteinuria and glomerulosclerosis.
        Kidney Int. 2006; 69: 2131-2147
        • Nangaku M.
        • Shankland S.J.
        • Couser W.G.
        Cellular response to injury in membranous nephropathy.
        J Am Soc Nephrol. 2005; 16: 1195-1204
        • Mundel P.
        • Reiser J.
        Proteinuria: an enzymatic disease of the podocyte.
        Kidney Int. 2009; 77: 571-580
        • Zhang C.
        • Hu J.J.
        • Xia M.
        • Boini K.M.
        • Brimson C.
        • Li P.L.
        Redox signaling via lipid raft clustering in homocysteine-induced injury of podocytes.
        Biochim Biophys Acta—Mol Cell Res. 2010; 1803: 482-491
        • Campbell K.N.
        • Raij L.
        • Mundel P.
        Role of angiotensin II in the development of nephropathy and podocytopathy of diabetes.
        Curr Diabetes Rev. 2011; 7: 3-7
        • Wolf G.
        • Chen S.
        • Ziyadeh F.N.
        From the periphery of the glomerular capillary wall toward the center of disease: podocyte injury comes of age in diabetic nephropathy.
        Diabetes. 2005; 54: 1626-1634
        • Colicelli J.
        ABL tyrosine kinases: evolution of function, regulation, and specificity.
        Sci Signal. 2010; 3: re6
        • Mokhtari D.
        • Al-Amin A.
        • Turpaev K.
        • Li T.
        • Idevall-Hagren O.
        • Li J.
        • et al.
        Imatinib mesilate-induced phosphatidylinositol 3-kinase signalling and improved survival in insulin-producing cells: role of Src homology 2-containing inositol 5′-phosphatase interaction with c-Abl.
        Diabetologia. 2013; 56: 1327-1338
        • Liu W.
        • Wu J.
        • Xiao L.
        • Bai Y.
        • Qu A.
        • Zheng Z.
        • et al.
        Regulation of neuronal cell death by c-Abl-Hippo/MST2 signaling pathway.
        PLoS ONE. 2012; 7: e36562
        • Koos B.
        • Jeibmann A.
        • Lünenbürger H.
        • Mertsch S.
        • Nupponen N.N.
        • Roselli A.
        • et al.
        The tyrosine kinase c-Abl promotes proliferation and is expressed in atypical teratoid and malignant rhabdoid tumors.
        Cancer. 2010; 116: 5075-5081
        • Jackson R.C.
        • Radivoyevitch T.
        Modelling c-Abl signalling in activated neutrophils: the anti-inflammatory effect of seliciclib.
        Biodiscovery. 2013; 7: 4
        • Estrada L.D.
        • Zanlungo S.M.
        • Alvarez A.R.
        c-Abl tyrosine kinase signaling: a new player in AD tau pathology.
        Curr Alzheimer Res. 2011; 8: 643-651
        • Fred R.G.
        • Boddeti S.K.
        • Lundberg M.
        • Welsh N.
        Imatinib mesylate stimulates low-density lipoprotein receptor-related protein 1-mediated ERK phosphorylation in insulin-producing cells.
        Clin Sci. 2015; 128: 17-28
        • Cleary R.A.
        • Wang R.
        • Waqar O.
        • Singer H.A.
        • Tang D.D.
        Role of c-Abl tyrosine kinase in smooth muscle cell migration.
        Am J Physiol Cell Physiol. 2014; 306: C753-C761
        • Karuppagounder S.S.
        • Brahmachari S.
        • Lee Y.
        • Dawson V.L.
        • Dawson T.M.
        • Ko H.S.
        The c-Abl inhibitor, Nilotinib, protects dopaminergic neurons in a preclinical animal model of Parkinson's disease.
        Sci Rep. 2014; 4: 4874
        • Jacson J.G.
        • Post S.M.
        • Lozano G.
        Regulation of tissue- and stimulus-specific cell fate decisions by p53 in vivo.
        J Pathol. 2011; 223: 127-136
        • Megyeri K.
        • Orosz L.
        • Kemeny L.
        Vesicular stomatitis virus infection triggers apoptosis associated with decreased (Np63α and increased Bax levels in the immortalized HaCaT keratinocyte cell line.
        Biomed Phamacother. 2007; 61: 254-260
        • Skirnisdottir I.
        • Seidal T.
        The apoptosis regulators p53, bax and PUMA: relationship and impact on outcome in early stage (FIGO I-II) ovarian carcinoma after post-surgical taxane-based treatment.
        Oncol Rep. 2012; 27: 741-747
        • Chen Y.W.
        • Chenier I.
        • Chang S.Y.
        • Tran S.
        • Ingelfinger J.R.
        • Zhang S.L.
        High glucose promotes nascent nephron apoptosis via NF-KB and p53 pathways.
        Am J Physiol Renal Physiol. 2011; 300: F147-F156
        • Carvajal L.A.
        • Manfredi J.J.
        Another fork in the road-life or death decisions by the tumour suppressor p53.
        Eur Mol Biol Org. 2013; 14: 414-421
        • Deshpande S.D.
        • Putta S.
        • Wang M.
        • Lai J.Y.
        • Bitzer M.
        • Nelson R.G.
        • et al.
        Transforming growth factor-β-induced cross talk between p53 and a MicroRNA in the pathogenesis of diabetic nephropathy.
        Diabetes. 2013; 62: 3151-3162
        • Chen X.
        • Ren Z.
        • Liang W.
        • Zha D.
        • Liu Y.
        • Chen C.
        • et al.
        c-Abl mediates angiotensin II-induced apoptosis in podocytes.
        J Mol Histol. 2013; 44: 597-608
        • Mu J.
        • Woods J.
        • Zhou Y.P.
        • Roy R.S.
        • Li Z.H.
        • Zycband E.
        • et al.
        Chronic inhibition of dipeptidyl peptidase-4 with a sitagliptin analog preserves pancreatic β-cell mass and function in a rodent model of type 2 diabetes.
        Diabetes. 2006; 55: 1695-1704
        • Liu T.Y.
        • Shi C.X.
        • Gao R.
        • Sun H.J.
        • Xiong X.Q.
        • Ding L.
        • et al.
        Irisin inhibits hepatic gluconeogenesis and increases glycogen synthesis via PI3K/Akt pathway in type 2 diabetic mice and hepatocytes.
        Clin Sci. 2015; 129: 839-850
        • Shao M.L.
        • Lu X.M.
        • Cong W.T.
        • Xing X.
        • Tan Y.
        • Li Y.Q.
        • et al.
        Multiple low-dose radiation prevents type 2 diabetes-induced renal damage through attenuation of dyslipidemia and insulin resistance and subsequent renal inflammation and oxidative stress.
        PLoS ONE. 2014; 9: e92574
        • Tegtmeyer N.
        • Backert S.
        Role of Abl and Src family kinases in actin-cytoskeletal rearrangements induced by the Helicobacter pylori CagA protein.
        Eur J Cell Biol. 2011; 90: 880-890
        • Dudek S.M.
        • Chiang E.T.
        • Camp S.M.
        • Guo Y.
        • Zhao J.
        • Brown M.E.
        • et al.
        Abl tyrosine kinase phosphorylates nonmuscle myosin light chain kinase to regulate endothelial barrier function.
        Mol Biol Cell. 2010; 21: 4042-4056
        • Iqbal S.
        • Zhang S.
        • Driss A.
        • Liu Z.R.
        • Kim H.R.
        • Wang Y.
        • et al.
        PDGF upregulates Mcl-1 through activation of β-catenin and HIF-1α-dependent signaling in human prostate cancer cells.
        PLoS ONE. 2012; 7: e30764
        • Jia D.Y.
        • Du Z.H.
        • Liu S.M.
        • Liu H.J.
        • Wang F.W.
        • Ling E.A.
        • et al.
        c-Abl is involved in high glucose-induced apoptosis in embryonic E12.5 cortical neural progenitor cells from the mouse brain.
        J Neurochem. 2008; 106: 1720-1730
        • Pan B.
        • Yang L.
        • Wang J.
        • Wang Y.
        • Wang J.
        • Zhou X.
        • et al.
        c-Abl tyrosine kinase mediates neurotoxic prion peptide-induced neuronal apoptosis via regulating mitochondrial homeostasis.
        Mol Neurobiol. 2014; 49: 1102-1116
        • Chung K.S.
        • Han G.
        • Kim B.K.
        • Kim H.M.
        • Yang J.S.
        • Ahn J.
        • et al.
        A novel antitumor piperazine alkyl compound causes apoptosis by inducing RhoB expression via ROS-mediated c-Abl/p38 MAPK signaling.
        Cancer Chemother Pharmacol. 2013; 72: 1315-1324
        • Wang X.
        • Zeng L.
        • Wang J.
        • Chau J.F.
        • Lai K.P.
        • Jia D.
        • et al.
        A positive role for c-Abl in Atm and Atr activation in DNA damage response.
        Cell Death Differ. 2010; 18: 5-15
        • Furlan A.
        • Stagni V.
        • Hussain A.
        • Richelme S.
        • Conti F.
        • Prodosmo A.
        • et al.
        Abl interconnects oncogenic Met and p53 core pathways in cancer cells.
        Cell Death Differ. 2011; 18: 1608-1616
        • Vashistha H.
        • Meggs L.
        Diabetic nephropathy: lessons from the mouse.
        Ochsner J. 2013; 13: 140-146
        • Zhou L.L.
        • Cao W.
        • Xie C.
        • Tian J.
        • Zhou Z.
        • Zhou Q.
        • et al.
        The receptor of advanced glycation end products plays a central role in advanced oxidation protein products-induced podocyte apoptosis.
        Kidney Int. 2012; 82: 759-770
        • Gao F.
        • Yao M.
        • Shi Y.
        • Hao J.
        • Ren Y.
        • Liu Q.
        • et al.
        Notch pathway is involved in high glucose-induced apoptosis in podocytes via Bcl-2 and p53 pathways.
        J Cell Biochem. 2013; 114: 1029-1038
        • Zhou Y.
        • Zhang E.
        • Berggreen C.
        • Jing X.
        • Osmark P.
        • Lang S.
        • et al.
        Survival of pancreatic beta cells is partly controlled by a TCF7L2-p53-p53INP1-dependent pathway.
        Hum Mol Genet. 2012; 21: 196-207
        • Skírnisdóttir I.
        • Seidal T.
        The apoptosis regulators p53, bax and PUMA: Relationship and impact on outcome in early stage (FIGO I-II) ovarian carcinoma after post-surgical taxane-based treatment.
        Oncol Rep. 2012; 27: 741-747
        • Freed-Pastor W.A.
        • Prives C.
        Mutant p53: one name, many proteins.
        Genes Dev. 2012; 26: 1268-1286
        • Chen C.
        • Liang W.
        • Jia J.
        • van Goor H.
        • Singhal P.C.
        • Ding G.
        Aldosterone induces apoptosis in rat podocytes: role of PI3-K/Akt and p38MAPK signaling pathways.
        Nephron Exp Nephrol. 2009; 113: e26-e34
        • Liu Y.
        • Liang W.
        • Yang Q.
        • Ren Z.
        • Chen X.
        • Zha D.
        • et al.
        IQGAP1 mediates angiotensin II-induced apoptosis of podocytes via the ERK1/2 MAPK signaling pathway.
        Am J Nephrol. 2013; 38: 430-444

      CHORUS Manuscript

      View Open Manuscript