Advertisement
Research Article| Volume 113, P179-186, March 2016

Download started.

Ok

Lispro insulin in people with non-alcoholic liver cirrhosis and type 2 diabetes mellitus

Published:January 08, 2016DOI:https://doi.org/10.1016/j.diabres.2015.12.006

      Highlights

      • Glycemia and insulin dosage must be frequently monitored and adjusted in people with T2DM and CLD.
      • By acting faster, lispro analog might reduce the risk of hypoglycemia and provide efficient liver signaling.
      • A guideline is not available concerning insulin preparations for people with CLD and T2DM.
      • For the first time we show that lispro regulates glucose better than regular insulin in people with CLD and T2DM.

      Abstract

      Aims

      To compare metabolic control under lispro and recombinant regular human insulin (RHI) in people with diet-unresponsive type 2 diabetes mellitus (T2DM) and compensated non-alcoholic liver disease (CLD).

      Methods

      108 people with T2DM and CLD were randomly allocated to RHI or lispro according to a 12 + 12 week cross-over protocol. A 1-week continuous glucose monitoring (CGM) session was performed at the end of each treatment period followed by a standard meal test with a 12 IU lispro or RHI shot ahead.

      Results

      CGM showed higher glycemic excursions under RHI than under lispro (p < 0.01) with lower glucose levels in the late post-absorption phase (p < 0.05) and even more during the night (p < 0.01). Post-challenge incremental areas under the curve (ΔAUC) were undistinguishable for insulin but lower for glucose, while insulin peaked higher and earlier and glycemic excursions were lower with lispro than with RHI (0.05 < p < 0.001).

      Conclusions

      Lispro granted lower early postprandial glucose levels and late postprandial hypoglycemic rates and therefore might represent the treatment of choice for people with T2DM and compensated CLD. This might depend on its faster/shorter–living effects, as well as, on the lower liver glucose output expected from its earlier hepatic distribution.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Diabetes Research and Clinical Practice
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Gentile S.
        • Loguercio C.
        • Marmo R.
        • Carbone L.
        • Del Vecchio Blanco C.
        Incidence of altered glucose tolerance in liver cirrhosis.
        Diab Res Clin Pract. 1993; 22: 37-44
        • Zein N.N.
        • Abdulkarim A.S.
        • Wiesner R.H.
        • Egan K.S.
        • Persing D.H.
        Prevalence of diabetes mellitus in patients with end-stage liver cirrhosis due to hepatitis C, alcohol, or cholestatic disease.
        J Hepatol. 2000; 32: 209-217
        • Bugianesi E.
        • McCullough A.J.
        • Marchesini G.
        Insulin resistance: a metabolic pathway to chronic liver disease.
        Hepatology. 2005; 42: 987-1000
        • Soverini V.
        • Persico M.
        • Bugianesi E.
        • Forlani G.
        • Salamone F.
        • Massarone M.
        • et al.
        HBV and HCV infection in type 2 diabetes mellitus: a survey in three diabetes units in different Italian areas.
        Acta Diabetol. 2011; 48: 337-343
        • Vanni E.
        • Abate M.L.
        • Gentilcore E.
        • Hickman I.
        • Gambino R.
        • Cassader M.
        • et al.
        Sites and mechanisms of insulin resistance in nonobese, nondiabetic patients with chronic hepatitis C.
        Hepatology. 2009; 50: 697-706
        • Cavallo-Perin P.
        • Pagano G.
        Alterazioni del metabolismo del glucosio in pazienti con epatopatie.
        Il Diabete. 1993; 5: 308-316
        • Gentile S.
        • Turco S.
        • Guarino G.
        • Oliviero B.
        • Annunziata S.
        • Cozzolino D.
        • et al.
        Effect of treatment with acarbose and insulin in patients with non-insulin-dependent diabetes mellitus associated with non-alcoholic liver cirrhosis.
        Diab Obes Metab. 2001; 2: 33-40
        • Carratù R.
        • Parisi P.
        • Frullone S.
        Glibenclamide associated reversible cholestasis.
        Eur J Med. 1992; 1: 441-443
        • Petrides A.S.
        • Stanley T.
        • Matthews D.E.
        • Vogt C.
        • Bush A.J.
        • Lambeth H.
        Insulin resistance in cirrhosis: prolonged reduction of hyperinsulinemia normalizes insulin sensitivity.
        Hepatology. 1998; 28: 141-149
        • Nair S.
        • Diehl A.M.
        • Wiseman M.
        • Farr Jr., G.H.
        • Perrillo R.P.
        Metformin in the treatment of non-alcoholic steatohepatitis: a pilot open label trial.
        Aliment Pharmacol Ther. 2004; 20: 23-28
        • Zhang X.
        • Harmsen W.S.
        • Mettler T.A.
        • Kim W.R.
        • Roberts R.O.
        • Therneau T.M.
        • et al.
        Continuation of metformin use after a diagnosis of cirrhosis significantly improves survival of patients with diabetes.
        Hepatology. 2014; 60: 2008-2016
        • Brackett C.C.
        Clarifying metformin's role and risks in liver dysfunction.
        J Am Pharm Assoc. 2010; 50: p407
      1. Zawadski J, Green L, Graham B. Troglitazone-associated 15-month post-marketing hepatotoxicity: FDA science forum [article online]. Available at http://www.accessdata.fda.gov/ScienceForums/forum02/AB-04.htm [accessed 21.02.15].

        • Bonkovsky H.L.
        • Azar R.
        • Bird S.
        • Szabo G.
        • Banner B.
        Severe cholestatic hepatitis caused by thiazolidinediones: risks associated with substituting rosiglitazone for troglitazone.
        Dig Dis Sci. 2002; 47: 1632-1637
        • Chase M.P.
        • Yarze J.C.
        Pioglitazone-associated fulminant hepatic failure.
        Am J Gastroenterol. 2002; 97: 502-503
        • Itou M1
        • Kawaguchi T.
        • Taniguchi E.
        • Sata M.
        Dipeptidyl peptidase-4: a key player in chronic liver disease.
        World J Gastroenterol. 2013; 19: 2298-2306
        • Liu J1
        • Wang G.
        • Jia Y.
        • Xu Y.
        GLP-1 receptor agonists: effects on the progression of non-alcoholic fatty liver disease.
        Diabetes Metab Res Rev. 2014; ([Epub ahead of print])https://doi.org/10.1002/dmrr.2580
        • Qiang S.
        • Nakatsu Y.
        • Seno Y.
        • Fujishiro M.
        • Sakoda H.
        • Kushiyama A.
        • et al.
        Treatment with the SGLT2 inhibitor luseogliflozin improves nonalcoholic steatohepatitis in a rodent model with diabetes mellitus.
        Diabetol Metab Syndr. 2015; 7: p104
        • Hayashizaki-Someya Y.
        • Kurosaki E.
        • Takasu T.
        • Mitori H.
        • Yamazaki S.
        • Koide K.
        • et al.
        an SGLT2 inhibitor, exhibits a prophylactic effect on hepatic steatosis and fibrosis induced by choline-deficient l-amino acid-defined diet in rats.
        Eur J Pharmacol. 2015; 754: 19-24
        • Petrides A.S.
        Liver disease and diabetes mellitus.
        Diabet Rev. 1994; 2: 2-18
        • Morello C.M.
        Pharmacokinetics and pharmacodynamics of insulin analogs in special populations with type 2 diabetes mellitus.
        Int J Gen Med. 2011; 4: 827-835
        • Bolli G.B.
        Hypoglycaemia unawareness.
        Diabetes Metab. 1997; 23: 29-35
        • American Diabetes Association Clinical Practice Recommendations
        Standards of medical care for patients with DM.
        Diab Care. 2014; 37: S14-S80
        • Pugh R.P.H.
        • Murray-Layon I.M.
        • Dawson J.L.
        Transection of the oesophagus for bleeding oesophageal varices.
        Br J Surg. 1973; 60: 646-649
        • Home P.D.
        • Pacini G.
        Hepatic dysfunction and insulin insensitivity in type 2 diabetes mellitus: a critical target for insulin-sensitizing agents.
        Diabs Obes Metab. 2008; 10: 699-718
        • Bruce D.G.
        • Chisholm D.J.
        • Storlien L.H.
        • Kraegen E.W.
        Phisiological importance of deficiency in early prandial insulin secretion in non-insulin-dependent diabetes.
        Diabetes. 1988; 37: 736-744
        • Howey D.C.
        • Bowsher R.R.
        • Brunelle R.L.
        • Woodwort J.R.
        [Lys(B28) Pro(B29)]-human insulin. A rapidly absorbed analog of human insulin.
        Diabetes. 1994; 43: 396-402
        • Anderson
        • Brunelle Jr., J.H.
        • Keohane R.
        • Koivisto P.
        • Trautman V.A.
        • Vignati M.E.
        • et al.
        Insulin analogue improves mealtime treatment of NIDDM patients.
        Arch Intern Med. 1997; 157: 1249-1255
      2. Levemir (insulin detemir [rDNA origin] injection) [prescribing information].
        Novo Nordisk Inc., Princeton, NJ2010
      3. Lantus (insulin glargine [rDNA origin] injection) [prescribing information].
        Sanofi-Aventis, Bridgewater2007 ([March 2])
      4. Humalog (insulin lispro [rDNA origin] injection) [prescribing information].
        Eli Lilly and Company, Indianapolis, IN2011 ([May 18])
      5. NovoLog (insulin aspart [rDNA origin] injection) [prescribing information].
        Novo Nordisk Inc., Princeton, NJ2011 ([July])
        • Holmes G.
        • Galitz L.
        • Hu P.
        • Lyness W.
        Pharmacokinetics of insulin aspart in obesity, renal impairment, or hepatic impairment.
        Br J Clin Pharmacol. 2005; 60: 469-476
        • Helms K.L.
        • Kelley K.W.
        Insulin glulisine: an evaluation of its pharmacodynamic properties and clinical application.
        Ann Pharmacother. 2009; 43: 658-668
      6. Apidra® (insulin glulisine) [prescribing information].
        Sanofi-Aventis, Bridgewater, NJ2009