Advertisement

Insulin-deficient diabetes-induced bone microarchitecture alterations are associated with a decrease in the osteogenic potential of bone marrow progenitor cells: Preventive effects of metformin

  • María José Tolosa
    Affiliations
    LIOMM (Laboratorio de Investigación en Osteopatías y Metabolismo Mineral), Department of Biological Sciences, School of Exact Sciences, National University of La Plata, La Plata, Argentina
    Search for articles by this author
  • Sara Rocío Chuguransky
    Affiliations
    LIOMM (Laboratorio de Investigación en Osteopatías y Metabolismo Mineral), Department of Biological Sciences, School of Exact Sciences, National University of La Plata, La Plata, Argentina
    Search for articles by this author
  • Claudia Sedlinsky
    Affiliations
    LIOMM (Laboratorio de Investigación en Osteopatías y Metabolismo Mineral), Department of Biological Sciences, School of Exact Sciences, National University of La Plata, La Plata, Argentina
    Search for articles by this author
  • León Schurman
    Affiliations
    LIOMM (Laboratorio de Investigación en Osteopatías y Metabolismo Mineral), Department of Biological Sciences, School of Exact Sciences, National University of La Plata, La Plata, Argentina
    Search for articles by this author
  • Antonio Desmond McCarthy
    Affiliations
    LIOMM (Laboratorio de Investigación en Osteopatías y Metabolismo Mineral), Department of Biological Sciences, School of Exact Sciences, National University of La Plata, La Plata, Argentina
    Search for articles by this author
  • María Silvina Molinuevo
    Affiliations
    LIOMM (Laboratorio de Investigación en Osteopatías y Metabolismo Mineral), Department of Biological Sciences, School of Exact Sciences, National University of La Plata, La Plata, Argentina
    Search for articles by this author
  • Ana María Cortizo
    Correspondence
    Corresponding author at: LIOMM, Department of Biological Sciences, School of Exact Sciences, National University of La Plata, 47 y 115 (1900) La Plata, Argentina. Tel.: +54 221 4235333x33; fax: +54 221 4512426.
    Affiliations
    LIOMM (Laboratorio de Investigación en Osteopatías y Metabolismo Mineral), Department of Biological Sciences, School of Exact Sciences, National University of La Plata, La Plata, Argentina
    Search for articles by this author

      Abstract

      Aims

      Diabetes mellitus is associated with metabolic bone disease and increased low-impact fractures. The insulin-sensitizer metformin possesses in vitro, in vivo and ex vivo osteogenic effects, although this has not been adequately studied in the context of diabetes. We evaluated the effect of insulin-deficient diabetes and/or metformin on bone microarchitecture, on osteogenic potential of bone marrow progenitor cells (BMPC) and possible mechanisms involved.

      Methods

      Partially insulin-deficient diabetes was induced in rats by nicotinamide/streptozotocin-injection, with or without oral metformin treatment. Femoral metaphysis micro-architecture, ex vivo osteogenic potential of BMPC, and BMPC expression of Runx-2, PPARγ and receptor for advanced glycation endproducts (RAGE) were investigated.

      Results

      Histomorphometric analysis of diabetic femoral metaphysis demonstrated a slight decrease in trabecular area and a significant reduction in osteocyte density, growth plate height and TRAP (tartrate-resistant acid phosphatase) activity in the primary spongiosa. BMPC obtained from diabetic animals showed a reduction in Runx-2/PPARγ ratio and in their osteogenic potential, and an increase in RAGE expression. Metformin treatment prevented the diabetes-induced alterations in bone micro-architecture and BMPC osteogenic potential.

      Conclusion

      Partially insulin-deficient diabetes induces deleterious effects on long-bone micro-architecture that are associated with a decrease in BMPC osteogenic potential, which could be mediated by a decrease in their Runx-2/PPARγ ratio and up-regulation of RAGE. These diabetes-induced alterations can be totally or partially prevented by oral administration of metformin.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Diabetes Research and Clinical Practice
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Pietschman P.
        • Patsch J.M.
        • Schernataner G.
        Diabetes and bone.
        Horm Metab Res. 2010; 42: 763-768
        • Janghorbani M.
        • Feskanich D.
        • Willett W.C.
        • Hu F.
        Prospective study of diabetes and risk of hip fracture The Nurses’ Health Study.
        Diabetes Care. 2006; 29: 1573-1578
        • Janghorbani M.
        • Van Dam R.M.
        • Willett W.C.
        • Hu F.B.
        Systematic review of type 1 and type 2 diabetes mellitus and risk of fracture.
        Am J Epidemiol. 2007; 166: 495-505
        • Thrailkill K.M.
        • Lumpkin Jr., C.K.
        • Bunn R.C.
        • Kemp S.F.
        • Fowlkes J.L.
        Is insulin an anabolic agent in bone? Dissecting the diabetic bone for clues.
        Am J Physiol Endocrinol Metab. 2005; 289: E735-E745
        • Loder R.T.
        The influence of diabetes mellitus on the healing of closed fractures.
        Clin Orthop Relat Res. 1988; 232: 210-216
        • Hamann C.
        • Goettsch C.
        • Mettelsiefen J.
        • Henkenjohann V.
        • Rauner M.
        • Hempel U.
        • et al.
        Delayed bone regeneration and low bone mass in a rat model of insulin-resistant type 2 diabetes mellitus is due to impaired osteoblast function.
        Am J Physiol Endocrinol Metab. 2011; 301: E1220-E1228
        • Roszer T.
        Inflammation as death or life signal in diabetic fracture healing.
        Inflamm Res. 2011; 60: 3-10
        • Santana R.B.
        • Xu L.
        • Chase H.B.
        • Amar S.
        • Graves D.T.
        • Trackman P.C.
        A role for advanced glycation end products in diminished bone healing in type 1 diabetes.
        Diabetes. 2003; 52: 1502-1510
        • Saito M.
        • Marumo K.
        Collagen cross-links as a determinant of bone quality: a possible explanation for bone fragility in aging, osteoporosis, and diabetes mellitus.
        Osteoporos Int. 2010; 21: 195-214
        • Alikhani M.
        • Alikhani Z.
        • Boyd C.
        • MacLellan C.M.
        • Raptis M.
        • Liu R.
        • et al.
        Advanced glycation end products stimulate osteoblast apoptosis via the MAP kinase and cytosolic apoptotic pathways.
        Bone. 2007; 40: 345-353
        • Cortizo A.M.
        • Lettieri M.G.
        • Barrio D.A.
        • Mercer N.
        • Etcheverry S.B.
        • McCarthy A.D.
        Advanced glycation end-products (AGEs) induce concerted changes in the osteoblastic expression of their receptor RAGE and in the activation of extracellular signal-regulated kinases (ERK).
        Mol Cell Biochem. 2003; 250: 1-10
        • Franke S.
        • Rüster C.
        • Pester J.
        • Hofmann G.
        • Oelzner P.
        • Wolf G.
        Advanced glycation end products affect growth and function of osteoblasts.
        Clin Exp Rheumatol. 2011; 29: 650-660
        • McCarthy A.D.
        • Etcheverry S.B.
        • Bruzzone L.
        • Cortizo A.M.
        Effects of advanced glycation end-products on the proliferation and differentiation of osteoblast-like cells.
        Mol Cell Biochem. 1997; 170: 43-51
        • McCarthy A.D.
        • Etcheverry S.B.
        • Bruzzone L.
        • Lettieri G.
        • Barrio D.A.
        • Cortizo A.M.
        Non-enzymatic glycosylation of a type I collagen matrix: effects on osteoblastic development and oxidative stress.
        BMC Cell Biol. 2001; 2: 16
        • McCarthy A.D.
        • Etcheverry S.B.
        • Cortizo A.M.
        Effect of advanced glycation endproducts on the secretion of insulin-like growth factor-I and its binding proteins: role in osteoblast development.
        Acta Diabetol. 2001; 38: 113-122
        • Mercer N.
        • Ahmed H.
        • Etcheverry S.B.
        • Vasta G.R.
        • Cortizo A.M.
        Regulation of advanced glycation end product (AGE) receptors and apoptosis by AGEs in osteoblast-like cells.
        Mol Cell Biochem. 2007; 306: 87-94
        • Schurman L.
        • McCarthy A.D.
        • Sedlinsky C.
        • Gangoity M.V.
        • Arnol V.
        • Bruzzone L.
        • et al.
        Metformin reverts deleterious effects of advanced glycation end-products (AGEs) on osteoblastic cells.
        Exp Clin Endocrinol Metab. 2008; 116: 333-340
        • Zhou Z.
        • Xiong W.C.
        RAGE and its ligands in bone metabolism.
        Front Biosci (Schol Ed). 2011; 3: 768-776
        • Zaidi M.
        Skeletal remodeling in health and disease.
        Nat Medicine. 2007; 13: 791-801
        • Lecka–Czernik B.
        • Moerman E.J.
        • Grant D.F.
        • Lehmann J.M.
        • Manolagas S.C.
        • Jilka R.L.
        Divergent effects of selective peroxisome proliferator-activated receptor γ2 ligands on adipocyte versus osteoblast differentiation.
        Endocrinology. 2002; 143: 2376-2384
        • Botolin S.
        • Faugere M.C.
        • Malluche H.
        • Orth M.
        • Meyer M.
        • McCabe L.R.
        Increased bone adiposity and peroxisome proliferator-activated receptor-γ2 in type 1 diabetic mice.
        Endocrinology. 2005; 146: 3622-3631
        • Ali A.
        • Weinstein R.S.
        • Stewart S.A.
        • Parfitt A.M.
        • Manolagas S.C.
        • Jilka R.L.
        Rosiglitazone causes bone loss in mice by suppressing osteoblast differentiation and bone formation.
        Endocrinology. 2005; 146: 1226-1235
        • Rzonca S.O.
        • Suva L.J.
        • Gaddy D.
        • Montague D.C.
        • Lecka-Czernik B.
        Bone is a target for the antidiabetic compound rosiglitazone.
        Endocrinology. 2004; 145: 401-406
        • Cortizo A.M.
        • Sedlinsky C.
        • McCarthy A.D.
        • Blanco A.
        • Schurman L.
        Osteogenicactions of the anti-diabetic drug metformin on osteoblasts in culture.
        Eur J Pharmacol. 2006; 536: 38-46
        • Molinuevo M.S.
        • Schurman L.
        • McCarthy A.D.
        • Cortizo A.M.
        • Tolosa M.J.
        • Gangoiti M.V.
        • et al.
        Effect of metformin on bone marrow progenitor cell differentiation: in vivo and in vitro studies.
        J Bone Miner Res. 2010; 25: 211-216
        • George P.
        • McCrimmon R.J.
        Potential role of non-insulin adjunct therapy in Type 1 diabetes.
        Diabetic Med. 2013; 30: 179-188
        • Guidelines on Handling and Training of Laboratory Animals
        Purl U.F.A.W. The Biological Council of Animal Research, Welfare Panel. Guide for the Care and Use of Laboratory Animals: Eighth Edition. The National Academies Press, Washington D.C.2011
        • Tamara A.
        • Matsuyama-Yokono A.
        • Nakano R.
        • Someya Y.
        • Shibasaki M.
        Hypoglycaemic effects of antidiabetic drugs in streptozotocin-nicotinamide-induced mildly diabetic and streptozotocin-induced severely diabetic rats.
        Basic Clin Pharmacol Toxicol. 2008; 103: 560-568
        • Cortizo A.M.
        • Ruderman G.
        • Correa G.
        • Mogilner I.G.
        • Tolosa E.J.
        Effect of surface topography of collagen scaffolds on Cytotoxicity and osteoblast differentiation.
        J Biomater Tissue Eng. 2012; 2: 1-8
        • Bradford M.M.
        A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.
        Anal Biochem. 1976; 72: 248-254
        • Laemmli U.K.
        Cleavage of structural protein during the assembly of the head of bacteriophage T4.
        Nature. 1970; 227: 680-685
        • Wongdee K.
        • Charoenphandhu N.
        Osteoporosis in diabetes mellitus: possible cellular and molecular mechanisms.
        World J Diabetes. 2011; 15: 41-48
        • Arya A.
        • Cheah S.C.
        • Looi C.Y.
        • Taha H.
        • Rais Mustafa M.
        • Mohd M.A.
        The methanolic fraction of centratherum anthelminticum seed downregulates pro-inflammatory cytokines, oxidative stress, and hyperglycemia in STZ-nicotinamide-induced type 2 diabetic rats.
        Food Chem Toxicol. 2012; 50: 4209-4220
        • Silva M.J.
        • Brodt M.D.
        • Lynch M.A.
        • McKenzie J.A.
        • Tanouye K.M.
        • Nyman J.S.
        • et al.
        Type 1 diabetes in young rats leads to progressive trabecular bone loss, cessation of cortical bone growth, and diminished whole bone strength and fatigue life.
        J Bone Miner Res. 2009; 24: 1618-1627
        • Nuttall M.E.
        • Gimble J.M.
        Controlling the balance between osteoblastogenesis and adipogenesis and the consequent therapeutic implications.
        Curr Opin Pharmacol. 2004; 4: 290-294
        • Nyman J.S.
        • Even J.L.
        • Jo C.H.
        • Herbert E.G.
        • Murry M.R.
        • Cockrell G.E.
        • et al.
        Increasing duration of type 1 diabetes perturbs the strength-structure relationship and increases brittleness of bone.
        Bone. 2011; 48: 733-740
        • Kawashima Y.
        • Fritton J.C.
        • Yakar S.
        • Epstein S.
        • Schaffler M.B.
        • Jepsen K.J.
        • et al.
        Type 2 diabetic mice demonstrate slender long bones with increased fragility secondary to increased osteoclastogenesis.
        Bone. 2009; 44: 648-655
        • Kayal R.A.
        • Tsatsas D.
        • Bauer M.A.
        • Allen B.
        • Al-Sebaei M.O.
        • Kakar S.
        • et al.
        Diminished bone formation during diabetic fracture healing is related to the premature resorption of cartilage associated with increased osteoclast activity.
        J Bone Miner Res. 2007; 22: 560-568
        • Kogianni G.
        • Noble B.S.
        The biology of osteocytes.
        Curr Osteoporos Rep. 2007; 5: 81-86
        • Portal-Núñez S.
        • Lozano D.
        • de Castro L.F.
        • de Gortázar A.R.
        • Nogués X.
        • Esbrit P.
        Alterations of the Wnt/beta-catenin pathway and its target genes for the N- and C-terminal domains of parathyroid hormone-related protein in bone from diabetic mice.
        FEBS Lett. 2010; 584: 3095-3100
        • Bidwell J.P.
        • Yang J.
        • Robling A.G.
        Is HMGB1 an osteocyte alarmin?.
        J Cell Biochem. 2008; 103: 1671-1680
        • Manolagas S.C.
        From estrogen-centric to aging and oxidative stress: a revised perspective of the pathogenesis of osteoporosis.
        Endocr Rev. 2010; 31: 266-300
        • Wiernsperger N.F.
        Metformin: intrinsic vasculoprotective properties.
        Diabetes Technol Ther. 2000; 2: 259-272
        • Lund S.S.
        • Tarnow L.
        • Astrup A.S.
        • Hovind P.
        • Jacobsen P.K.
        • Alibegovic A.C.
        • et al.
        Effect of adjunct metformin treatment in patients with type-1 diabetes and persistent inadequate glycaemic control. A randomized study.
        PLoS ONE. 2008; 3: e3363
        • Moon R.J.
        • Bascombe L.A.
        • Holt R.I.
        The addition of metformin in type 1 diabetes improves insulin sensitivity, diabetic control, body composition and patient well-being.
        Diabetes Obes Metab. 2007; 9: 143-145
        • Vella S.
        • Buetow L.
        • Royle P.
        • Livingstone S.
        • Colhoun H.M.
        • Petrie J.R.
        The use of metformin in type 1 diabetes: a systematic review of efficacy.
        Diabetologia. 2010; 53: 809-820
        • Lu H.
        • Kraut D.
        • Gerstenfeld L.C.
        • Graves D.T.
        Diabetes interferes with the bone formation by affecting the expression of transcription factors that regulate osteoblast differentiation.
        Endocrinology. 2003; 144: 346-352
        • Kume S.
        • Kato S.
        • Yamagishi S.
        • Inagaki Y.
        • Ueda S.
        • Arima N.
        • et al.
        Advanced glycation end-products attenuate human mesenchymal stem cells and prevent cognate differentiation into adipose tissue, cartilage, and bone.
        J Bone Miner Res. 2005; 20: 1647-1658
        • Stolzing A.
        • Sellers D.
        • Llewelyn O.
        • Scutt A.
        Diabetes induced changes in rat mesenchymal stem cells.
        Cells Tissues Org. 2010; 191: 453-465