Advertisement
Research Article| Volume 94, ISSUE 1, P111-118, October 2011

Changes in the arginine methylation of organ proteins during the development of diabetes mellitus

  • Jong Hoon Lee
    Affiliations
    Department of Plastic and Reconstructive surgery, Eulji University School of Medicine, Eulji General Hospital, 280-1 Haegye 1-dong, Nowon-gu, Seoul, Republic of Korea
    Search for articles by this author
  • Gil Hong Park
    Affiliations
    Department of Biochemistry & Biology, Korea University School of Medicine, Anam-dong, Sungbuk-Gu, Seoul, Republic of Korea
    Search for articles by this author
  • Young Koo Lee
    Correspondence
    Corresponding author at: Department of Orthopedic Surgery, Soonchunhyang University 4 Jung-Dong, Wonmi-Gu, Bucheon-Si, Gyeonggi-Do 420-767, Republic of Korea. Tel.: +82 32 621 5272; fax: +82 32 621 5018.
    Affiliations
    Department of Orthopedic Surgery, Soonchunhyang University 4 Jung-Dong, Wonmi-Gu, Bucheon-Si, Gyeonggi-Do, Republic of Korea
    Search for articles by this author
  • Jun Hyung Park
    Affiliations
    Department of Plastic and Reconstructive surgery, Eulji University School of Medicine, Eulji General Hospital, 280-1 Haegye 1-dong, Nowon-gu, Seoul, Republic of Korea
    Search for articles by this author

      Abstract

      Aim

      In this study, we examined changes in asymmetric dimethylarginine (ADMA), dimethylarginine dimethylaminohydrolase (DDAH), nitric oxide synthesis (NOS), and the arginine methylation of organ proteins during the development of diabetes in mice.

      Methods

      Db/db mice developed significant obesity and fasting hyperglycemia during diabetogenesis. During diabetogenesis, the expression of ADMA and nNOS was increased, while that of DDAH1 and protein-arginine methyltransferase 1 (PRMT1) was decreased. Additionally, arginine methylation in the liver and adipose tissue was altered during diabetogenesis.

      Results

      Changes were evident at 75, 60, and 52 kDa in liver tissue and at 38 and 25 kDa in adipose tissue. Collectively, DDAH and ADMA are closely associated with the development of obesity and diabetes, and the arginine methylation levels of certain proteins were changed during diabetes development.

      Conclusion

      Protein arginine methylation plays a role in the pathogenesis of diabetes.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Diabetes Research and Clinical Practice
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Tesfamariam B.
        • Cohen R.A.
        Free radicals mediate endothelial cell dysfunction caused by elevated glucose.
        Am J Physiol. 1992; 263: H321-H326
        • Sydow K.
        • Mondon C.E.
        • Cooke J.P.
        Insulin resistance: potential role of the endogenous nitric oxide synthase inhibitor ADMA.
        Vasc Med. 2005; 10: S35-S43
        • Tran C.T.
        • Leiper J.M.
        • Vallance P.
        The DDAH/ADMA/NOS pathway.
        Atheroscler Suppl. 2003; 4: 33-40
        • Hummel K.P.
        • Dickie M.M.
        • Coleman D.L.
        Diabetes, a new mutation in the mouse.
        Science. 1966; 153: 1127-1128
        • Chen H.
        • Charlat O.
        • Tartaglia L.A.
        • Woolf E.A.
        • Weng X.
        • Ellis S.J.
        • et al.
        Evidence that the diabetes gene encodes the leptin receptor: identification of a mutation in the leptin receptor gene in db/db mice.
        Cell. 1996; 84: 491-495
        • Cote J.
        • Boisvert F.M.
        • Boulanger M.C.
        • Bedford M.T.
        • Richard S.
        Sam68 RNA binding protein is an in vivo substrate for protein arginine N-methyltransferase 1.
        Mol Biol Cell. 2003; 14: 274-287
        • Lee S.M.
        • Bressler R.
        Prevention of diabetic nephropathy by diet control in the db/db mouse.
        Diabetes. 1981; 30: 106-111
        • Hummel K.P.
        • Coleman D.L.
        • Lane P.W.
        The influence of genetic background on expression of mutations at the diabetes locus in the mouse. I. C57BL-KsJ and C57BL-6J strains.
        Biochem Genet. 1972; 7: 1-13
        • Clarke S.
        Protein methylation.
        Curr Opin Cell Biol. 1993; 5: 977-983
        • Gary J.D.
        • Clarke S.
        RNA and protein interactions modulated by protein arginine methylation.
        Prog Nucleic Acid Res Mol Biol. 1998; 61: 65-131
        • Boisvert F.M.
        • Cote J.
        • Boulanger M.C.
        • Richard S.
        A proteomic analysis of arginine-methylated protein complexes.
        Mol Cell Proteomics. 2003; 2: 1319-1330
        • Vallance P.
        • Leone A.
        • Calver A.
        • Collier J.
        • Moncada S.
        Accumulation of an endogenous inhibitor of nitric oxide synthesis in chronic renal failure.
        Lancet. 1992; 339: 572-575
        • Garlick P.J.
        • Waterlow J.C.
        • Swick R.W.
        Measurement of protein turnover in rat liver. Analysis of the complex curve for decay of label in a mixture of proteins.
        Biochem J. 1976; 156: 657-663
        • Inoue R.
        • Miyake M.
        • Kanazawa A.
        • Sato M.
        • Kakimoto Y.
        Decrease of 3-methylhistidine and increase of NG, NG-dimethylarginine in the urine of patients with muscular dystrophy.
        Metabolism. 1979; 28: 801-804
        • Goldberg A.L.
        • St John A.C.
        Intracellular protein degradation in mammalian and bacterial cells: part 2.
        Annu Rev Biochem. 1976; 45: 747-803
        • Dice J.F.
        • Walker C.D.
        Protein degradation in metabolic and nutritional disorders.
        Ciba Found Symp. 1979; : 331-350
        • Gardiner S.M.
        • Kemp P.A.
        • Bennett T.
        • Palmer R.M.
        • Moncada S.
        Regional and cardiac haemodynamic effects of NG,NG-dimethyl-l-arginine and their reversibility by vasodilators in conscious rats.
        Br J Pharmacol. 1993; 110: 1457-1464
        • Leiper J.
        • Vallance P.
        Biological significance of endogenous methylarginines that inhibit nitric oxide synthases.
        Cardiovasc Res. 1999; 43: 542-548
        • MacAllister R.J.
        • Whitley G.S.
        • Vallance P.
        Effects of guanidino and uremic compounds on nitric oxide pathways.
        Kidney Int. 1994; 45: 737-742
        • Vallance P.
        • Leone A.
        • Calver A.
        • Collier J.
        • Moncada S.
        Endogenous dimethylarginine as an inhibitor of nitric oxide synthesis.
        J Cardiovasc Pharmacol. 1992; 20: S60-S62
        • Dowling R.B.
        • Newton R.
        • Robichaud A.
        • Cole P.J.
        • Barnes P.J.
        • Wilson R.
        Effect of inhibition of nitric oxide synthase on Pseudomonas aeruginosa infection of respiratory mucosa in vitro.
        Am J Respir Cell Mol Biol. 1998; 19: 950-958
        • Ueda S.
        • Kato S.
        • Matsuoka H.
        • Kimoto M.
        • Okuda S.
        • Morimatsu M.
        • et al.
        Regulation of cytokine-induced nitric oxide synthesis by asymmetric dimethylarginine: role of dimethylarginine dimethylaminohydrolase.
        Circ Res. 2003; 92: 226-233
        • Wells S.M.
        • Holian A.
        Asymmetric dimethylarginine induces oxidative and nitrosative stress in murine lung epithelial cells.
        Am J Respir Cell Mol Biol. 2007; 36: 520-528
        • Baylis C.
        Arginine, arginine analogs and nitric oxide production in chronic kidney disease.
        Nat Clin Pract Nephrol. 2006; 2: 209-220
        • Teerlink T.
        ADMA metabolism and clearance.
        Vasc Med. 2005; 10: S73-S81
        • Kitiyakara C.
        • Chabrashvili T.
        • Jose P.
        • Welch W.J.
        • Wilcox C.S.
        Effects of dietary salt intake on plasma arginine.
        Am J Physiol Regul Integr Comp Physiol. 2001; 280: R1069-R1075
        • Masuda H.
        • Goto M.
        • Tamaoki S.
        • Azuma H.
        Accelerated intimal hyperplasia and increased endogenous inhibitors for NO synthesis in rabbits with alloxan-induced hyperglycaemia.
        Br J Pharmacol. 1999; 126: 211-218
        • Palm F.
        • Onozato M.L.
        • Luo Z.
        • Wilcox C.S.
        Dimethylarginine dimethylaminohydrolase (DDAH): expression, regulation, and function in the cardiovascular and renal systems.
        Am J Physiol Heart Circ Physiol. 2007; 293: H3227-H3245
        • Altinova A.E.
        • Arslan M.
        • Sepici-Dincel A.
        • Akturk M.
        • Altan N.
        • Toruner F.B.
        Uncomplicated type 1 diabetes is associated with increased asymmetric dimethylarginine concentrations.
        J Clin Endocrinol Metab. 2007; 92: 1881-1885
        • Onozato M.L.
        • Tojo A.
        • Goto A.
        • Fujita T.
        • Wilcox C.S.
        Oxidative stress and nitric oxide synthase in rat diabetic nephropathy: effects of ACEI and ARB.
        Kidney Int. 2002; 61: 186-194
        • Xiong Y.
        • Fu Y.F.
        • Fu S.H.
        • Zhou H.H.
        Elevated levels of the serum endogenous inhibitor of nitric oxide synthase and metabolic control in rats with streptozotocin-induced diabetes.
        J Cardiovasc Pharmacol. 2003; 42: 191-196
        • Lin K.Y.
        • Ito A.
        • Asagami T.
        • Tsao P.S.
        • Adimoolam S.
        • Kimoto M.
        • et al.
        Impaired nitric oxide synthase pathway in diabetes mellitus: role of asymmetric dimethylarginine and dimethylarginine dimethylaminohydrolase.
        Circulation. 2002; 106: 987-992
        • Palm F.
        • Buerk D.G.
        • Carlsson P.O.
        • Hansell P.
        • Liss P.
        Reduced nitric oxide concentration in the renal cortex of streptozotocin-induced diabetic rats: effects on renal oxygenation and microcirculation.
        Diabetes. 2005; 54: 3282-3287
        • Evans J.L.
        • Goldfine I.D.
        • Maddux B.A.
        • Grodsky G.M.
        Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes.
        Endocr Rev. 2002; 23: 599-622
        • Eid H.M.
        • Lyberg T.
        • Arnesen H.
        • Seljeflot I.
        Insulin and adiponectin inhibit the TNFalpha-induced ADMA accumulation in human endothelial cells: the role of DDAH.
        Atherosclerosis. 2007; 194: e1-e8
        • Leiper J.M.
        • Santa Maria J.
        • Chubb A.
        • MacAllister R.J.
        • Charles I.G.
        • Whitley G.S.
        • et al.
        Identification of two human dimethylarginine dimethylaminohydrolases with distinct tissue distributions and homology with microbial arginine deiminases.
        Biochem J. 1999; 343: 209-214
        • Ogawa T.
        • Kimoto M.
        • Watanabe H.
        • Sasaoka K.
        Metabolism of NG,NG- and NG,N′G-dimethylarginine in rats.
        Arch Biochem Biophys. 1987; 252: 526-537
        • Nijveldt R.J.
        • Teerlink T.
        • Siroen M.P.
        • van Lambalgen A.A.
        • Rauwerda J.A.
        • van Leeuwen P.A.
        The liver is an important organ in the metabolism of asymmetrical dimethylarginine (ADMA).
        Clin Nutr. 2003; 22: 17-22
        • Tran C.T.
        • Fox M.F.
        • Vallance P.
        • Leiper J.M.
        Chromosomal localization, gene structure, and expression pattern of DDAH1: comparison with DDAH2 and implications for evolutionary origins.
        Genomics. 2000; 68: 101-105
        • Wang D.
        • Gill P.S.
        • Chabrashvili T.
        • Onozato M.L.
        • Raggio J.
        • Mendonca M.
        • et al.
        Isoform-specific regulation by N(G),N(G)-dimethylarginine dimethylaminohydrolase of rat serum asymmetric dimethylarginine and vascular endothelium-derived relaxing factor/NO.
        Circ Res. 2007; 101: 627-635
        • Achan V.
        • Broadhead M.
        • Malaki M.
        • Whitley G.
        • Leiper J.
        • MacAllister R.
        • et al.
        Asymmetric dimethylarginine causes hypertension and cardiac dysfunction in humans and is actively metabolized by dimethylarginine dimethylaminohydrolase.
        Arterioscler Thromb Vasc Biol. 2003; 23: 1455-1459
        • MacAllister R.J.
        • Parry H.
        • Kimoto M.
        • Ogawa T.
        • Russell R.J.
        • Hodson H.
        • et al.
        Regulation of nitric oxide synthesis by dimethylarginine dimethylaminohydrolase.
        Br J Pharmacol. 1996; 119: 1533-1540
        • Murray-Rust J.
        • Leiper J.
        • McAlister M.
        • Phelan J.
        • Tilley S.
        • Santa Maria J.
        • et al.
        Structural insights into the hydrolysis of cellular nitric oxide synthase inhibitors by dimethylarginine dimethylaminohydrolase.
        Nat Struct Biol. 2001; 8: 679-683
        • Ogawa T.
        • Kimoto M.
        • Sasaoka K.
        Occurrence of a new enzyme catalyzing the direct conversion of NG,NG-dimethyl-l-arginine to l-citrulline in rats.
        Biochem Biophys Res Commun. 1987; 148: 671-677
        • Powell L.A.
        • Nally S.M.
        • McMaster D.
        • Catherwood M.A.
        • Trimble E.R.
        Restoration of glutathione levels in vascular smooth muscle cells exposed to high glucose conditions.
        Free Radic Biol Med. 2001; 31: 1149-1155
        • Valkonen V.P.
        • Tuomainen T.P.
        • Laaksonen R.
        DDAH gene and cardiovascular risk.
        Vasc Med. 2005; 10: S45-S48
        • Cooke J.P.
        • Dzau V.J.
        Nitric oxide synthase: role in the genesis of vascular disease.
        Annu Rev Med. 1997; 48: 489-509
        • Erdely A.
        • Freshour G.
        • Maddox D.A.
        • Olson J.L.
        • Samsell L.
        • Baylis C.
        Renal disease in rats with type 2 diabetes is associated with decreased renal nitric oxide production.
        Diabetologia. 2004; 47: 1672-1676
        • Choi K.C.
        • Kim N.H.
        • An M.R.
        • Kang D.G.
        • Kim S.W.
        • Lee J.
        Alterations of intrarenal renin-angiotensin and nitric oxide systems in streptozotocin-induced diabetic rats.
        Kidney Int Suppl. 1997; 60: S23-S27