Advertisement

Epigenetics and diabetic cardiomyopathy

      Abstract

      Cardiovascular complications are a chief cause of mortality and morbidity in diabetic patients. Recent studies suggest that epigenetic changes which may arise as a consequence of environmental factors play an important role in predisposition to disease. Epigenetic mechanisms such as DNA methylation, chromatin remodeling and histone modifications regulate the gene expression in response to environmental signals. Role of epigenetics has been recognized in the pathology of diabetes, however its role in diabetic associated cardiomyopathy remains largely unexplored. In this article, we review current literature on the epigenetic mechanisms involved in diabetes and discuss recent evidence of epigenetic changes that may play an important role in pathophysiology of DCM.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Diabetes Research and Clinical Practice
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Kochupilai N.
        Clinical endocrinology in India.
        Curr Sci. 2000; 79: 1061-1067
        • King H.
        • Aubert R.E.
        • Herman W.H.
        Global burden of diabetes 1995–2025: prevalence, numerical estimates and projection.
        Diabetes Care. 1998; 21: 1414-1431
        • Abbott R.D.
        • Donahue R.P.
        • Kannel W.B.
        • Wilson P.W.
        The impact of diabetes on survival following myocardial infarction in men vs. women: the Framingham Study.
        JAMA. 1988; 260: 3456-3460
        • Goede P.
        • Lund-Andersen H.
        • Parving H.H.
        • Pedersen O.
        Effect of a multifactorial intervention on mortality in type 2 diabetes.
        New Engl J Med. 2008; 358: 580-591
        • Rubler S.
        • Dlugash J.
        • Yuceoglu Y.Z.
        • Kumral T.
        • Branwood A.W.
        • Grishman A.
        New type of cardiomyopathy associated with diabetic glomerulosclerosis.
        Am J Cardiol. 1972; 30: 595-602
        • Galderisi M.
        • Anderson K.M.
        • Wilson P.W.
        • Levy D.
        Echocardiographic evidence for the existence of a distinct diabetic cardiomyopathy.
        Am J Cardiol. 1991; 68: 85-89
        • Shehadeh A.
        • Regan T.J.
        Cardiac consequences of diabetes mellitus.
        Clin Cardiol. 1995; 18: 301-305
        • Regan T.J.
        • Lyons M.M.
        • Ahmed S.S.
        • Levinson G.E.
        • Oldewurtel H.A.
        • Ahmad M.R.
        • et al.
        Evidence for cardiomyopathy in familial diabetes mellitus.
        J Clin Invest. 1977; 60: 884-899
        • Bird A.
        Perceptions of epigenetics.
        Nature. 2007; 447: 396-398
        • Cubas P.
        • Vincent C.
        • Coen E.
        An epigenetic mutation responsible for natural variation in floral symmetry.
        Nature. 1999; 401: 157-161
        • Takai D.
        • Jones P.A.
        The CpG island searcher: a new WWW resource.
        In Silico Biol. 2003; 3: 235-240
        • Bird A.
        DNA methylation patterns and epigenetic memory.
        Genes Dev. 2002; 16: 6-21
        • Goll M.G.
        • Bestor T.H.
        Annu Rev Biochem. 2005; 74: 481-514
        • Wilson A.S.
        • Power B.E.
        • Molloy P.L.
        DNA hypomethylation and human diseases.
        Biochim Biophys Acta. 2007; 1775: 138-162
        • Strichman-Almashanu L.
        • Lee R.
        • Onyango P.
        • Perlman E.
        • Flam F.
        • Frieman M.
        • et al.
        Genome-wide screen for normally methylated human CpG islands that can identify novel imprinted genes.
        Genome Res. 2002; 12: 543-554
        • Kouzarides T.
        Chromatin modifications and their function.
        Cell. 2007; 128: 693-705
        • Santos-Rosa H.
        • Caldas C.
        Chromatin modifier enzymes, the histone code and cancer.
        Eur J Cancer. 2005; 41: 2381-2402
        • Villeneuve L.M.
        • Natarajan R.
        The role of epigenetics in the pathology of diabetic complications.
        Am J Physiol Renal Physiol. 2010; 299: F14-F25
        • Ling C.
        • Poulsen P.
        • Simonsson S.
        Genetic and epigenetic factors are associated with expression of respiratory chain component NDUFB6 in human skeletal muscle.
        J Clin Invest. 2007; 117: 3427-3435
        • Caro J.
        • Triester S.
        • Patel V.
        • Tapscott E.
        • Frazier N.
        • Dohm G.
        Liver glucokinase: decreased activity in patients with type II diabetes.
        Horm Metab Res. 1995; 27: 19-22
        • Jiang M.
        • Fei J.
        • Lan M.
        • Lu Z.
        • Liu M.
        • Fan W.
        • et al.
        Hypermethylation of hepatic Gck promoter in ageing rats contributes to diabetogenic potential.
        Diabetologia. 2008; 51: 1525-1533
        • Ronn T.
        • Poulsen P.
        • Hansson O.
        • Holmkvist J.
        • Almgren P.
        • Nilsson P.
        • et al.
        Age influences DNA methylation and gene expression of COX7A1 in human skeletal muscle.
        Diabetologia. 2008; 51: 1159-1168
        • Kuroda A.
        • Rauch T.
        • Todorov I.
        • Ku H.
        • Al-Abdullah I.
        • Kandeel F.
        • et al.
        Insulin gene expression is regulated by DNA methylation.
        PloS one. 2009; 4: e6953
        • Krishnamurthy J.
        • Ramsey M.
        • Ligon K.
        • Torrice C.
        • Koh A.
        • Bonner-Weir S.
        • et al.
        p16INK4a induces an age-dependent decline in islet regenerative potential.
        Nature. 2006; 443: 453-457
        • Miao F.
        • Wu X.
        • Zhang L.
        • Yuan Y.
        • Riggs A.
        • Natarajan R.
        Genome-wide analysis of histone lysine methylation variations caused by diabetic conditions in human monocytes.
        J Biol Chem. 2007; 282: 13854-13863
        • El-Osta A.
        • Brasacchio D.
        • Yao D.
        • Pocai A.
        • Jones P.L.
        • Roeder R.G.
        • et al.
        Transient high glucose causes persistent epigenetic changes and altered gene expression during subsequent normoglycemia.
        J Exp Med. 2008; 205: 2409-2417
        • Gluckman P.
        • Hanson M.
        • Buklijas T.
        • Low F.
        • Beedle A.S.
        Nat Rev Endocrinol. 2009; 5: 401-408
        • Deering T.
        • Ogihara T.
        • Trace A.
        • Maier B.
        • Mirmira R.
        Methyltransferase Set7/9 maintains transcription and euchromatin structure at islet-enriched genes.
        Diabetes. 2009; 58: 185-193
        • Brasacchio D.
        • Okabe J.
        • Tikellis C.
        • Balcerczyk A.
        • George P.
        • Baker E.
        • et al.
        Hyperglycemia induces a dynamic cooperativity of histone methylase and demethylase enzymes associated with gene-activating epigenetic marks that coexist on the lysine tail.
        Diabetes. 2009; 58: 1229-1236
        • Bhandare R.
        • Schug J.
        • Le Lay J.
        • Fox A.
        • Smirnova O.
        • Liu C.
        • et al.
        Genome-wide analysis of histone modifications in human pancreatic islets.
        Genome Res. 2010; 20: 428-433
        • Chen H.
        • Gu X.
        • Su I.
        • Bottino R.
        • Contreras J.L.
        • Tarakhovsky A.
        • et al.
        Polycomb protein Ezh2 regulates pancreatic beta-cell Ink4a/Arf expression and regeneration in diabetes mellitus.
        Genes Dev. 2009; 23: 975-985
        • Dhawan S.
        • Tschen S.I.
        • Bhushan A.
        Bmi-1 regulates the Ink4a/Arf locus to control pancreatic beta-cell proliferation.
        Genes Dev. 2009; 23: 906-911
        • Mackay D.
        • Callaway J.
        • Marks S.
        • White H.
        • Acerini C.
        • Boonen S.
        • et al.
        Hypomethylation of multiple imprinted loci in individuals with transient neonatal diabetes is associated with mutations in ZFP57.
        Nat Genet. 2008; 40: 949-951
        • Gray S.
        • De Meyts P.
        Role of histone and transcription factor acetylation in diabetes pathogenesis.
        Diabetes Metab Res Rev. 2005; 21: 416-433
        • Miao F.
        • Gonzalo I.
        • Lanting L.
        • Natarajan R.
        In vivo chromatin remodeling events leading to inflammatory gene transcription under diabetic conditions.
        J Biol Chem. 2004; 279: 18091-18097
        • Mathiyalagan P.
        • Chang L.
        • Du X.
        • El-Osta A.
        Cardiac ventricular chambers are epigenetically distinguishable.
        Cell Cycle. 2010; 9: 612-617
        • Mutskov V.
        • Raaka B.M.
        • Felsenfeld G.
        • Gershengorn M.C.
        The human insulin gene displays transcriptionally active epigenetic marks in islet-derived mesenchymal precursor cells in the absence of insulin expression.
        Stem Cells. 2007; 25: 3223-3233
        • Parrizas M.
        • Maestro M.
        • Boj S.
        • Paniagua A.
        • Casamitjana R.
        • Gomis R.
        • et al.
        Hepatic nuclear factor 1-alpha directs nucleosomal hyperacetylation to its tissue-specific transcriptional targets.
        Mol Cell Biol. 2001; 21: 3234-3243
        • Stanojevic V.
        • Habener J.
        • Thomas M.
        Pancreas duodenum homeobox-1 transcriptional activation requires interactions with p300.
        Endocrinology. 2004; 145: 2918-2928
        • Malecki M.
        • Jhala U.
        • Antonellis A.
        • Fields L.
        • Doria A.
        • Orban T.
        • et al.
        Mutations in NEUROD1 are associated with the development of type 2 diabetes mellitus.
        Nat Genet. 1999; 23: 323-328
        • Ungaro P.
        • Teperino R.
        • Mirra P.
        • Longo M.
        • Ciccarelli M.
        • Raciti G.
        • et al.
        Hepatocyte nuclear factor (HNF)-4alpha-driven epigenetic silencing of the human PED gene.
        Diabetologia. 2010; 53: 1482-1492
        • Fang Z.
        • Prins J.
        • Marwick T.
        Diabetic cardiomyopathy: evidence, mechanisms, and therapeutic implications.
        Endocr Rev. 2004; 25: 543-567
        • Asghar O.
        • Al-Sunni A.
        • Khavandi K.
        • Khavandi A.
        • Withers S.
        • Greenstein A.
        • et al.
        Diabetic cardiomyopathy.
        Clin Sci (Lond). 2009; 116: 741-760
        • Gaikwad A.
        • Sayyed S.
        • Lichtnekert J.
        • Tikoo K.
        • Anders H.
        Renal failure increases cardiac histone h3 acetylation, dimethylation, and phosphorylation and the induction of cardiomyopathy-related genes in type 2 diabetes.
        Am J Pathol. 2010; 176: 1079-1083
        • Cheng Y.
        • Liu G.
        • Pan Q.
        • Guo S.
        • Yang X.
        Elevated expression of liver X receptor alpha (LXRα) in myocardium of streptozotocin induced diabetic rats.
        Inflammation. 2010; https://doi.org/10.1007/s10753-010-9281-5
        • Monkemann H.
        • De Vriese A.
        • Blom H.
        • Kluijtmans L.
        • Heil S.
        • Schild H.H.
        • et al.
        Early molecular events in the development of the diabetic cardiomyopathy.
        Amino Acids. 2002; 23: 331-336
        • Yu X.
        • Geng Y.
        • Liang J.
        • Lin Q.
        • Lin S.
        • Zhang S.
        • et al.
        High levels of glucose induce apoptosis in cardiomyocyte via epigenetic regulation of the insulin-like growth factor receptor.
        Exp Cell Res. 2010; 316: 2903-2909
        • Vahtola E.
        • Louhelainen M.
        • Forstén H.
        • Merasto S.
        • Raivio J.
        • Kaheinen P.
        • et al.
        Sirtuin1-p53, forkhead box O3a, p38 and post-infarct cardiac remodeling in the spontaneously diabetic Goto-Kakizaki rat.
        Cardiovasc Diabetol. 2010; 27: 5
        • Kao Y.
        • Chen Y.
        • Cheng C.
        • Lee T.
        • Chen Y.
        • Chen S.
        Tumor necrosis factor-alpha decreases sarcoplasmic reticulum Ca2+-ATPase expressions via the promoter methylation in cardiomyocytes.
        Crit Care Med. 2010; 38: 217-222
        • Rojas A.
        • Meherem S.
        • Kim Y.
        • Washington M.
        • Willis J.
        • Markowitz S.
        • et al.
        The aberrant methylation of TSP1 suppresses TGF-beta1 activation in colorectal cancer.
        Int J Cancer. 2008; 123: 14-21
        • Glenisson W.
        • Castronovo V.
        • Waltregny D.
        Histone deacetylase 4 is required for TGFbeta1-induced myofibroblastic differentiation.
        Biochim Biophys Acta. 2007; 1773: 1572-1582
        • Suzuki M.
        • Shigematsu H.
        • Shames D.
        • Sunaga N.
        • Takahashi T.
        • Shivapurkar N.
        • et al.
        DNA methylation-associated inactivation of TGFbeta-related genes DRM/Gremlin, RUNX3, and HPP1 in human cancers.
        Br J Cancer. 2005; : 1029-1037
        • Youngqing W.
        • Pan-Sheng F.
        • Bashar K.
        Association between enhanced type I collagen expression and epigenetic repression of the FLI1 gene in scleroderma fibroblasts.
        Arthritis Rheum. 2006; 54: 2271-2279
        • Ikeda K.
        • Iyama K.
        • Ishikawa N.
        • Egami H.
        • Nakao M.
        • Sado Y.
        • et al.
        Loss of expression of type IV collagen alpha5 and alpha6 chains in colorectal cancer associated with the hypermethylation of their promoter region.
        Am J Pathol. 2006; 168: 856-865
        • Yang S.
        • Wen H.
        • Zhang G.
        • Zhao S.
        • Luo Y.
        • Lu Q.
        Triptolide evaluates DNA methylation level of matrix metalloproteinase 9 gene in human fibrosarcoma HT-1080 cells.
        Zhongguo Zhong Yao Za Zhi. 2009; 34: 611-614
        • Ninomiya I.
        • Kawakami K.
        • Fushida S.
        • Fujimura T.
        • Funaki H.
        • Takamura H.
        • et al.
        Quantitative detection of TIMP-3 promoter hypermethylation and its prognostic significance in esophageal squamous cell carcinoma.
        Oncol Rep. 2008; 20: 1489-1495
        • Qin L.
        • Han Y.P.
        Epigenetic repression of matrix metalloproteinases in myofibroblastic hepatic stellate cells through histone deacetylases 4: implication in tissue fibrosis.
        Am J Pathol. 2010; 177: 1915-1928
        • Knight L.J.
        • Burrage J.
        • Bujac S.R.
        • Haggerty C.
        • Graham A.
        • Gibson N.J.
        • et al.
        Epigenetic silencing of the endothelin-B receptor gene in non-small cell lung cancer.
        Int J Oncol. 2009; 34: 465-471
        • Bogdarina I.
        • Welham S.
        • King
        • Burns S.
        • Clark A.
        Epigenetic modification of the renin–angiotensin system in the fetal programming of hypertension.
        Circ Res. 2007; 100: 520-526
        • Steven M.
        • Ling W.
        • Kim B.
        • Yves D.
        • Rashmi K.
        • Lynn A.
        MEF2 is up regulated during cardiac hypertrophy and is required for normal post-natal growth of the myocardium.
        Curr Biol. 1999; 9: 1203-1206
        • Sun H.
        • Yang X.
        • Zhu J.
        • Lv T.
        • Chen Y.
        • Chen G.
        • et al.
        Inhibition of p300-HAT results in a reduced histone acetylation and down-regulation of gene expression in cardiac myocytes.
        Life Sci. 2010; 87: 707-714
        • Feng B.
        • Chen S.
        • George B.
        • Feng Q.
        • Chakrabarti S.
        miR133a regulates cardiomyocyte hypertrophy in diabetes.
        Diabetes Metab Res Rev. 2010; 26: 40-49
        • McGee S.
        • van Denderen B.
        • Howlett K.
        • Mollica J.
        • Schertzer J.D.
        • Kemp B.E.
        • et al.
        AMP-activated protein kinase regulates GLUT4 transcription by phosphorylating histone deacetylase.
        Diabetes. 2008; 57: 860-867
        • McGee S.L.
        • Hargreaves M.
        Histone modifications and exercise adaptations.
        J Appl Physiol. 2010; 110: 258-263