Advertisement

Non-invasive glucose monitoring: Assessment of technologies and devices according to quantitative criteria

Published:December 06, 2006DOI:https://doi.org/10.1016/j.diabres.2006.10.027

      Abstract

      Aim of this review was to describe the main technologies for non-invasive glucose monitoring and the corresponding most relevant devices. The review tries to overcome the limitations of previous reviews on this topic, such as the lack of objective criteria for inclusion or exclusion of technologies or devices, and the poor organization of the information, which often does not allow easy comparison between technologies and devices. In this review, the information is concise and organized into specific categories, and hence it becomes easy to compare advantages and disadvantages of the different technologies and devices. For technologies, the categories of information considered are the technology name, the underlying physical principle, the technology limitations and the measurement sites on the human body. For devices, the categories of information are the device name, its approval condition (FDA Approval and/or CE Mark), the technology on which it is based, a device general description, the tests performed on the device, the corresponding results, safety information, aspects affecting usability, current status of the device and the manufacturer, an Internet reference for the device. A total of 14 technologies and 16 devices are included. Conclusions of the review were that, despite some interesting and promising technologies and devices, a satisfactory solution to the non-invasive glucose monitoring problem still requires further efforts.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Diabetes Research and Clinical Practice
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

      1. The Future of Diabetes Diagnostics: Monitoring & Management in 2010, PJB Publications USA Inc., New York, NY, 2001.

      2. Pipeline Insight: Diabetes Drug Delivery and Diagnostics—Towards the Non-invasive Revolution, Datamonitor, London, UK, 2003.

      3. Diabetes and Diabetic Complications: Major World Markets, second ed., Kalorama Information, New York, NY, 2005.

      4. Noninvasive Glucose Monitors—Technology, Players and Prospects, Greystone Associates, Amherst, NH, 2004.

        • Khalil O.S.
        Non-invasive glucose measurement technologies: an update from 1999 to the dawn of the new millennium.
        Diabetes Technol. Ther. 2004; 6: 660-697
        • Sieg A.
        • Guy R.H.
        • Delgado-Charro M.B.
        Noninvasive and minimally invasive methods for transdermal glucose monitoring.
        Diabetes Technol. Ther. 2005; 7: 174-197
      5. www.mendosa.com/meters.htm, Last checked 22/03/2006.

        • Siebert M.
        • Clauss L.C.
        • Carlisle M.
        • Casteels B.
        • de Jong P.
        • Kreuzer M.
        • et al.
        Health technology assessment for medical devices in Europe. What must be considered.
        Int. J. Technol. Assess. Health Care. 2002; 18: 733-740
        • Malin S.F.
        • Ruchti T.L.
        • Blank T.B.
        • Thennadil S.N.
        • Monfre S.L.
        Noninvasive prediction of glucose by near-infrared diffuse reflectance spectroscopy.
        Clin. Chem. 1999; 45: 1651-1658
      6. R.W. Waynant, V.M. Chenault, Overview of non-invasive fluid glucose measurement using optical techniques to maintain glucose control in diabetes mellitus (http://www.ieee.org/organizations/pubs/newsletters/leos/apr98/overview.htm. Last checked 22/03/2006).

        • Yki-Jarvinen H.
        • Utriainen T.
        Insulin-induced vasodilatation: physiology or pharmacology?.
        Diabetologia. 1998; 41: 369-379
        • Oomen P.H.
        • Kant G.D.
        • Dullaart R.P.
        • Reitsma W.D.
        • Smit A.J.
        Acute hyperglycemia and hyperinsulinemia enhance vasodilatation in Type 1 diabetes mellitus without increasing capillary permeability and inducing endothelial dysfunction.
        Microvasc. Res. 2002; 63: 1-9
        • Sibbald R.G.
        • Landolt S.J.
        • Toth D.
        Skin and diabetes.
        Endocrinol. Metab. Clin. North Am. 1996; 25: 463-472
        • Monnier V.M.
        • Bautista O.
        • Kenny D.
        • Sell D.R.
        • Fogarty J.
        • Dahms W.
        • et al.
        Skin collagen glycation, glycoxidation, and crosslinking are lower in subjects with long-term intensive versus conventional therapy of Type 1 diabetes: relevance of glycated collagen products versus HbA1c as markers of diabetic complications. DCCT Skin Collagen Ancillary Study Group. Diabetes Control and Complications Trial.
        Diabetes. 1999; 48: 870-880
        • Yeh S.J.
        • Khalil O.S.
        • Hanna C.F.
        • Kantor S.
        Near-infrared thermo-optical response of the localized reflectance of intact diabetic and nondiabetic human skin.
        J. Biomed. Opt. 2003; 8: 534-544
        • Mazarevica G.
        • Freivalds T.
        • Jurka A.
        Properties of erythrocyte light refraction in diabetic patients.
        J. Biomed. Opt. 2002; 7: 244-247
        • Fusman R.
        • Rotstein R.
        • Elishkewich K.
        • Zeltser D.
        • Cohen S.
        • Kofler M.
        Image analysis for the detection of increased erythrocyte, leukocyte and platelet adhesiveness/aggregation in the peripheral blood of patients with diabetes mellitus.
        Acta Diabetol. 2001; 38: 129-134
        • Marbach R.
        • Koschinsky T.
        • Gries F.A.
        • Heise H.M.
        Non-invasive blood glucose assay by near-infrared diffuse reflectance spectroscopy of the human inner lip.
        Appl. Spect. 1993; 47: 875-881
        • Kajiwara K.
        • Uemura T.
        • Kishikawa H.
        • Nishida K.
        • Hashiguchi Y.
        • Uehara M.
        • et al.
        Non-invasive measurement of blood glucose concentrations by analyzing Fourier transform infrared absorbance spectra through oral mucosa.
        Med. Biol. Eng. Comput. 1993; 31: S17-S22
        • Brancaleon L.
        • Bamberg M.P.
        • Sakamaki T.
        • Kollias N.
        Attenuated total reflection-Fourier transform infrared spectroscopy as a possible method to investigate biophysical parameters of stratum corneum in vivo.
        J. Invest. Dermatol. 2001; 116: 380-386
        • Heise H.M.
        • Marbach R.
        Human oral mucosa studies with varying blood glucose concentration by non-invasive ATR-FT-IR-spectroscopy.
        Cell. Mol. Biol. (Noisy-le-grand). 1998; 44: 899-912
        • Larin K.V.
        • Eledrisi M.S.
        • Motamedi M.
        • Esenaliev R.O.
        Noninvasive blood glucose monitoring with optical coherence tomography: a pilot study in human subjects.
        Diab. Care. 2002; 25: 2263-2267
        • Heinemann L.
        • Kramer U.
        • Klotzer H.M.
        • Hein M.
        • Volz D.
        • Hermann M.
        • et al.
        Noninvasive glucose measurement by monitoring of scattering coefficient during oral glucose tolerance tests. Non-Invasive Task Force.
        Diabetes Technol. Ther. 2000; 2: 211-220
        • Yeh S.J.
        • Hanna C.F.
        • Khalil O.S.
        Monitoring blood glucose changes in cutaneous tissue by temperature-modulated localized reflectance measurements.
        Clin. Chem. 2003; 49: 924-934
        • Hanlon E.B.
        • Manoharan R.
        • Koo T.W.
        • Shafer K.E.
        • Motz J.T.
        • Fitzmaurice M.
        • et al.
        Prospects for in vivo Raman spectroscopy.
        Phys. Med. Biol. 2000; 45: R1-R59
        • Steffes P.G.
        Laser-based measurement of glucose in the ocular aqueous humor: an efficacious portal for determination of serum glucose levels.
        Diabetes Technol. Ther. 1999; 1: 129-133
        • Owyoung A.
        • Jones E.
        Stimulated Raman spectroscopy using low-power cw lasers.
        Opt. Lett. 1977; 1: 152-154
      7. R.V. Tarr, P.G. Steffes, The non-invasive measure of d-glucose in the ocular aqueous humor using stimulated Raman spectroscopy (http://www.ieee.org/organizations/pubs/newsletters/leos/apr98/dgloucose.htm. Last checked 22/03/2006).

        • Yonzon C.R.
        • Haynes C.L.
        • Zhang X.
        • Walsh Jr., J.T.
        • Van Duyne R.P.
        A glucose biosensor based on surface-enhanced Raman scattering: improved partition layer, temporal stability, reversibility, and resistance to serum protein interference.
        Anal. Chem. 2004; 76: 78-85
        • Caspers P.J.
        • Lucassen G.W.
        • Puppels G.J.
        Combined in vivo confocal Raman spectroscopy and confocal microscopy of human skin.
        Biophys. J. 2003; 85: 572-580
        • Rabinovitch B.
        • March W.F.
        • Adams R.L.
        Noninvasive glucose monitoring of the aqueous humor of the eye: part I. Measurement of very small optical rotations.
        Diab. Care. 1982; 5: 254-258
      8. R.J. McNichols, B.D. Cameron, G.L. Coté, Development of a non-invasive polarimetric glucose sensor (http://www.ieee.org/organizations/pubs/newsletters/leos/apr98/glucosesensor.htm. Last checked 22/03/2006).

        • Rawer R.
        • Stork W.
        • Muller-Glaser K.D.
        Polarimetric methods for measurement of intra ocular glucose concentration.
        Biomed. Tech. (Berl.). 2002; 47: 186-188
        • Khalil O.S.
        Spectroscopic and clinical aspects of noninvasive glucose measurements.
        Clin. Chem. 1999; 45: 165-177
        • Cameron B.D.
        • Baba J.S.
        • Cote G.L.
        Measurement of the glucose transport time delay between the blood and aqueous humor of the eye for the eventual development of a noninvasive glucose sensor.
        Diabetes Technol. Ther. 2001; 3: 201-207
        • Shen Y.
        • Lu Z.
        • Spiers S.
        • MacKenzie H.A.
        • Ashton H.S.
        • Hannigan J.
        • et al.
        Measurement of the optical absorption coefficient of a liquid by use of a time-resolved photoacoustic technique.
        Appl. Opt. 2000; 39: 4007-4012
      9. http://www.integrity-app.com. Last checked 22/03/2006.

        • MacKenzie H.A.
        • Ashton H.S.
        • Spiers S.
        • Shen Y.
        • Freeborn S.S.
        • Hannigan J.
        • et al.
        Advances in photoacoustic noninvasive glucose testing.
        Clin. Chem. 1999; 45: 1587-1595
        • Sandby-Moller J.
        • Poulsen T.
        • Wulf H.C.
        Influence of epidermal thickness, pigmentation and redness on skin autofluorescence.
        Photochem. Photobiol. 2003; 77: 616-620
        • Domschke A.
        • March W.F.
        • Kabilan S.
        • Lowe C.
        Initial clinical testing of a holographic non-invasive contact lens glucose sensor.
        Diabetes Technol. Ther. 2006; 8: 89-93
        • Hillier T.A.
        • Abbott R.D.
        • Barrett E.J.
        Hyponatremia: evaluating the correction factor for hyperglycemia.
        Am. J. Med. 1999; 106: 399-403
        • Ermolina I.
        • Polevaya Y.
        • Feldman Y.
        Analysis of dielectric spectra of eukaryotic cells by computer modelling.
        Eur. Biophys. J. 2000; 29: 141-145
        • Polevaya Y.
        • Ermolina I.
        • Schlesinger M.
        • Ginzburg B.Z.
        • Feldman Y.
        Time domain dielectric spectroscopy study of human cells. II. Normal and malignant white blood cells.
        Biochim. Biophys. Acta. 1999; 1419: 257-271
        • Caduff A.
        • Hirt E.
        • Feldman Y.
        • Ali Z.
        • Heinemann L.
        First human experiments with a novel non-invasive, non-optical continuous glucose monitoring system.
        Biosens. Bioelectron. 2003; 19: 209-217
        • Gourzi M.
        • Rouane A.
        • Guelaz R.
        • Nadi M.
        • Jaspard F.
        Study of a new electromagnetic sensor for glycaemia measurement: in vitro results on blood pig.
        J. Med. Eng. Technol. 2003; 27: 276-281
        • Gourzi M.
        • Rouane A.
        • Guelaz R.
        • Alavi M.S.
        • McHugh M.B.
        • Nadi M.
        • et al.
        Non-invasive glycaemia blood measurements by electromagnetic sensor: study in static and dynamic blood circulation.
        J. Med. Eng. Technol. 2005; 29: 22-26
        • Moran G.R.
        • Jeffrey K.R.
        • Thomas J.M.
        • Stevens J.R.
        A dielectric analysis of liquid and glassy solid glucose/water solutions.
        Carbohydr. Res. 2000; 328: 573-584
        • Gebhart S.
        • Faupel M.
        • Fowler R.
        • Kapsner C.
        • Lincoln D.
        • McGee V.
        • et al.
        Glucose sensing in transdermal body fluid collected under continuous vacuum pressure via micropores in the stratum corneum.
        Diabetes Technol. Ther. 2003; 5: 159-166
        • Mitragotri S.
        • Coleman M.
        • Kost J.
        • Langer R.
        Analysis of ultrasonically extracted interstitial fluid as a predictor of blood glucose levels.
        J. Appl. Physiol. 2000; 89: 961-966
        • Kurnik R.T.
        • Oliver J.J.
        • Waterhouse S.R.
        • Dunn T.
        • Jayalakshmi Y.
        • Lesho M.
        • et al.
        Application of the mixtures of experts algorithm for signal processing in a noninvasive glucose monitoring system.
        Sens. Actuators B: Chem. 1999; 60: 19-26
        • Pitzer K.R.
        • Desai S.
        • Dunn T.
        • Edelman S.
        • Jayalakshmi Y.
        • Kennedy J.
        • et al.
        Detection of hypoglycemia with the GlucoWatch biographer.
        Diab. Care. 2001; 24: 881-885
        • Garg S.K.
        • Potts R.O.
        • Ackerman N.R.
        • Fermi S.J.
        • Tamada J.A.
        • Chase H.P.
        Correlation of fingerstick blood glucose measurements with GlucoWatch biographer glucose results in young subjects with Type 1 diabetes.
        Diab. Care. 1999; 22: 1708-1714
        • Tamada J.A.
        • Garg S.
        • Jovanovic L.
        • Pitzer K.R.
        • Fermi S.
        • Potts R.O.
        Noninvasive glucose monitoring: comprehensive clinical results. Cygnus Research Team.
        JAMA. 1999; 282: 1839-1844
        • Tierney M.J.
        • Garg S.
        • Ackerman N.R.
        • Fermi S.J.
        • Kennedy J.
        • Lopatin M.
        • et al.
        Effect of acetaminophen on the accuracy of glucose measurements obtained with the GlucoWatch biographer.
        Diabetes Technol. Ther. 2000; 2: 199-207
        • Tierney M.J.
        • Tamada J.A.
        • Potts R.O.
        • Jovanovic L.
        • Garg S.
        Cygnus Research Team, Clinical evaluation of the GlucoWatch biographer: a continual, non-invasive glucose monitor for patients with diabetes.
        Biosens. Bioelectron. 2001; 16: 621-629
        • Eastman R.C.
        • Chase H.P.
        • Buckingham B.
        • Hathout E.H.
        • Fuller-Byk L.
        • Leptien A.M.M.
        • et al.
        Use of the GlucoWatch biographer in children and adolescents with diabetes.
        Pediatr. Diab. 2002; 3: 127-134
        • Gandrud L.M.
        • Paguntalan H.U.
        • Van Wyhe M.M.
        • Kunselman B.L.
        • Leptien A.D.
        • Wilson D.M.
        • et al.
        Use of the Cygnus GlucoWatch biographer at a diabetes camp.
        Pediatrics. 2004; 113: 108-111
        • Nunnold T.
        • Colberg S.R.
        • Herriott M.T.
        • Somma C.T.
        Use of the noninvasive GlucoWatch Biographer during exercise of varying intensity.
        Diabetes Technol. Ther. 2004; 6: 454-462
        • Sieg A.
        • Guy R.H.
        • Delgado-Charro M.B.
        Noninvasive glucose monitoring by reverse iontophoresis in vivo: application of the internal standard concept.
        Clin. Chem. 2004; 50: 1383-1390
        • Dunn T.C.
        • Eastman R.C.
        • Tamada J.A.
        Rates of glucose change measured by blood glucose meter and the GlucoWatch Biographer during day, night, and around mealtimes.
        Diabetes Care. 2004; 27: 2161-2165
        • Tsalikian E.
        • Kollman C.
        • Mauras N.
        • Weinzimer S.
        • Buckingham B.
        • Xing D.
        • et al.
        GlucoWatch G2 Biographer alarm reliability during hypoglycemia in children.
        Diabetes Technol. Ther. 2004; 6: 559-566
        • Hathout E.
        • Patel N.
        • Southern C.
        • Hill J.
        • Anderson R.
        • Sharkey J.
        • et al.
        Home use of the GlucoWatch G2 biographer in children with diabetes.
        Pediatrics. 2005; 115: 662-666
        • Fiallo-Scharer R.
        Diabetes Research in Children Network Study [email protected], Eight-point glucose testing versus the continuous glucose monitoring system in evaluation of glycemic control in Type 1 diabetes.
        J. Clin. Endocrinol. Metab. 2005; 90: 3387-3391
        • Buckingham B.
        • Block J.
        • Burdick J.
        • Kalajian A.
        • Kollman C.
        • Choy M.
        • et al.
        Diabetes Research in Children Network, response to nocturnal alarms using a real-time glucose sensor.
        Diabetes Technol. Ther. 2005; 7: 440-447
        • Chase H.P.
        • Roberts M.D.
        • Wightman C.
        • Klingensmith G.
        • Garg S.K.
        • Van Wyhe M.
        • et al.
        Use of the GlucoWatch biographer in children with Type 1 diabetes.
        Pediatrics. 2003; 111: 790-794
        • Tamada J.A.
        • Davis T.L.
        • Leptien A.D.
        • Lee J.
        • Wang B.
        • Lopatin M.
        • et al.
        The effect of preapplication of corticosteroids on skin irritation and performance of the GlucoWatch G2 Biographer.
        Diabetes Technol. Ther. 2004; 6: 357-367
        • The Diabetes Research in Children Network (DirecNet) Study Group
        Youth and parent satisfaction with clinical use of the GlucoWatch G2 Biographer in the management of pediatric Type 1 diabetes.
        Diabetes Care. 2005; 28: 1929-1935
        • The Diabetes Research in Children Network (DirecNet) Study Group
        Psychological aspects of continuous glucose monitoring in pediatric Type 1 diabetes.
        Pediatr. Diab. 2006; 7: 32-38
        • Chase H.P.
        • Beck R.
        • Tamborlane W.
        • Buckingham B.
        • Mauras N.
        • Tsalikian E.
        • et al.
        A randomized multicenter trial comparing the GlucoWatch Biographer with standard glucose monitoring in children with Type 1 diabetes.
        Diabetes Care. 2005; 28: 1101-1106
        • Clarke W.L.
        • Cox D.
        • Gonder-Frederick L.A.
        • Carter W.
        • Pohl S.L.
        Evaluating clinical accuracy of systems for self-monitoring of blood glucose.
        Diabetes Care. 1987; 10: 622-628
        • Weinzimer S.A.
        PENDRA: the once and future noninvasive continuous glucose monitoring device?.
        Diabetes Technol. Ther. 2004; 6: 442-444
        • Pfutzner A.
        • Caduff A.
        • Larbig M.
        • Schrepfer T.
        • Forst T.
        Impact of posture and fixation technique on impedance spectroscopy used for continuous and noninvasive glucose monitoring.
        Diabetes Technol. Ther. 2004; 6: 435-441
        • Wentholt I.M.
        • Hoekstra J.B.
        • Zwart A.
        • DeVries J.H.
        Pendra goes Dutch: lessons for the CE mark in Europe.
        Diabetologia. 2005; 48: 1055-1058
      10. A. Caduff, F. Dewarrat, M. Talary, G. Stalder, L. Heinemann, Y. Feldman, Non-invasive glucose monitoring in patients with diabetes: a novel system based on impedance spectroscopy, Biosens. Bioelectron., 2006 (Epub ahead of print: doi:10.1016/j.bios.2006.01.031 (March 6, 2006)).

        • Smith A.
        • Yang D.
        • Delcher H.
        • Eppstein J.
        • Williams D.
        • Wilkes S.
        Fluorescein kinetics in interstitial fluid harvested from diabetic skin during fluorescein angiography: implications for glucose monitoring.
        Diabetes Technol. Ther. 1999; 1: 21-27
        • Chuang H.
        • Taylor E.
        • Davison T.W.
        Clinical evaluation of a continuous minimally invasive glucose flux sensor placed over ultrasonically permeated skin.
        Diabetes Technol. Ther. 2004; 6: 21-30