Advertisement

Oolong tea increases plasma adiponectin levels and low-density lipoprotein particle size in patients with coronary artery disease

      Abstract

      Background: Oolong tea has been studied for its effect on cardiovascular disease and obesity. Plasma adiponectin levels are reduced in obesity, in patients with type 2 diabetes mellitus and in coronary artery disease (CAD). Objective: To investigate prospectively, whether intake of Oolong tea influences plasma adiponectin levels, low-density lipoprotein (LDL) particle size, total cholesterol, high-density lipoprotein (HDL) cholesterol, LDL cholesterol, serum triglyceride and plasma glucose levels in patients with CAD. Methods: Twenty two patients in our study consumed Oolong tea (1000 ml) or water for 1 month in our randomized cross-over study design. Results: There was a significant difference in plasma adiponectin levels before and after 1 month intake of Oolong tea (6.26±3.26 μg/ml versus 6.88±3.28 μg/ml, P<0.05), and in plasma level LDL particle size (25.02±0.67 nm versus 25.31±0.60 nm, P<0.01). The water-consuming control group showed no changes (6.28±3.28 μg/ml versus 6.23±3.21 μg/ml) in adiponectin levels or LDL particle sizes (25.03±0.70 nm versus 25.02±0.72 nm). We also observed a significant difference in hemoglobin A1c levels (7.23±4.45% versus 6.99±4.30%, P<0.05) before and after intake of Oolong tea. Conclusion: Oolong tea may have beneficial effects on the progression of atherosclerosis in patients with CAD.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Diabetes Research and Clinical Practice
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Yang C.S.
        • Landau J.M.
        Effects of tea consumption on nutrition and health.
        J. Nutr. 2000; 130: 2409-2412
        • Benzie I.F.
        • Szeto Y.T.
        Total antioxidant capacity of teas by the ferric reducing/antioxidant power assay.
        J. Agric. Food Chem. 1999; 47: 633-636
        • Yang T.T.
        • Koo M.W.
        Hypercholesterolemic effects of Chinese tea.
        Pharmacol. Res. 1997; 35: 505-512
        • Han L.K.
        • Takaku T.
        • Li J.
        • Kimura Y.
        • Okuda H.
        Anti-obesity action of Oolong tea.
        Int. J. Obes. Relat. Metab. Disord. 1999; 23: 98-105
        • Matsuzawa Y.
        • Funahashi T.
        • Nakamura T.
        Molecular mechanism of metabolic syndrome X: contribution of adipocytokines adipocyte-derived bioactive substances.
        Ann. N.Y. Acad. Sci. 1999; 892: 146-154
        • Hotta K.
        • Funahashi T.
        • Arita Y.
        • et al.
        Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients.
        Arterioscler. Thromb. Vasc. Biol. 2000; 20: 1595-1599
        • Ouchi N.
        • Kihara S.
        • Arita Y.
        • et al.
        Novel modulator for endothelial adhesion molecules: adipocyte-derived plasma protein adiponectin.
        Circulation. 1999; 100: 2473-2476
        • Okamoto Y.
        • Arita Y.
        • Nishida M.
        • et al.
        An adipocyte-derived plasma protein, adiponectin, adheres to injured vascular walls.
        Horm. Metab. Res. 2000; 32: 47-50
        • Ouchi N.
        • Kihara S.
        • Arita Y.
        • et al.
        Adipocyte-derived plasma protein, adiponectin, suppresses lipid accumulation and class A scavenger receptor expression in human monocyte-derived macrophages.
        Circulation. 2001; 103: 1057-1063
        • Gardner C.D.
        • Fortmann S.P.
        • Krauss R.M.
        Association of small low-density lipoprotein particles with the incidence of coronary artery disease in men and women.
        JAMA. 1996; 276: 875-881
        • Stampfer M.J.
        • Krauss R.M.
        • Ma J.
        • et al.
        A prospective study of triglyceride level, low-density lipoprotein particle diameter, and risk of myocardial infarction.
        JAMA. 1996; 276: 882-888
        • Lamarche B.
        • Tchernof A.
        • Mauriege P.
        • et al.
        Fasting insulin and apolipoprotein B levels and low-density lipoprotein particle size as risk factors for ischemic heart disease.
        JAMA. 1998; 279: 1955-1961
        • Griffin B.A.
        • Freeman D.J.
        • Tait G.W.
        • et al.
        Role of plasma triglyceride in the regulation of plasma low density lipoprotein (LDL) sub-fractions: relative contribution of small, dense LDL to coronary heart disease risk.
        Atherosclerosis. 1994; 106: 241-253
      1. The Fifth Report of the Joint National Committee on detection, evaluation, and treatment of high blood pressure (JNC V), Arch. Intern. Med. 153 (1993) 154–183.

      2. Diabetes mellitus, Report of a WHO Study Group, World Health Organ. Tech. Rep. Ser. 727 (1985) 1–113.

        • Xie B.
        • Shi H.
        • Chen Q.
        • Ho C.T.
        Antioxidant properties of fractions and polyphenol constituents from green, Oolong and black teas.
        Proc. Natl. Sci. Counc. 1993; 17: 77-84
        • Arita Y.
        • Kihara S.
        • Ouchi N.
        • et al.
        Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity.
        Biochem. Biophys. Res. Commun. 1999; 257: 79-83
        • Austin M.A.
        • Breslow J.L.
        • Hennekens C.H.
        • Buring J.E.
        • Willett W.C.
        • Krauss R.M.
        Low-density lipoprotein subclass patterns and risk of myocardial infarction.
        JAMA. 1988; 260: 1917-1921
        • Ouchi N.
        • Kihara S.
        • Arita Y.
        • et al.
        Adiponectin, an adipocyte-derived plasma protein, inhibits endothelial NF-kappaB signalling through a cAMP-dependent pathway.
        Circulation. 2000; 102: 1296-1301
        • Maeda N.
        • Takahashi M.
        • Funahashi T.
        • et al.
        PPARgamma ligands increase expression and plasma concentrations of adiponectin, an adipose-derived protein.
        Diabetes. 2001; 50: 2094-2099
        • Okamoto Y.
        • Kihara S.
        • Ouchi N.
        Adiponectin reduces atherosclerosis in apolipoprotein E-deficient mice.
        Circulation. 2002; 106: 2767-2770
        • Vakkilainen J.
        • Makimattila S.
        • Seppala-Lindroos A.
        Endothelial dysfunction in men with small LDL particles.
        Circulation. 2000; 102: 716-721
        • Chait A.
        • Brazg R.L.
        • Tribble D.L.
        • Krauss R.M.
        Susceptibility of small, dense, low-density lipoproteins to oxidative modification in subjects with the atherogenic lipoprotein phenotype, pattern B.
        Am. J. Med. 1993; 94: 350-356
        • Galeano N.F.
        • Milne R.
        • Marcel Y.L.
        • et al.
        Apoprotein B structure and receptor recognition of triglyceride-rich low density lipoprotein (LDL) is modified in small LDL but not in triglyceride-rich LDL of normal size.
        J. Biol. Chem. 1994; 269: 511-519
        • Chen G.C.
        • Liu W.
        • Duchateau P.
        • et al.
        Conformational differences in human apolipoprotein B-100 among subspecies of low density lipoproteins (LDL). Association of altered proteolytic accessibility with decreased receptor binding of LDL subspecies from hypertriglyceridemic subjects.
        J. Biol. Chem. 1994; 269: 2912-2918
        • Anber V.
        • Griffin B.A.
        • McConnell M.
        • Packard C.J.
        • Shepherd J.
        Influence of plasma lipid and LDL-subfraction profile on the interaction between low density lipoprotein with human arterial wall proteoglycans.
        Atherosclerosis. 1996; 124: 261-271
        • Austin M.A.
        • King M.C.
        • Vranizan K.M.
        • Krauss R.M.
        Atherogenic lipoprotein phenotype. A proposed genetic marker for coronary heart disease risk.
        Circulation. 1990; 82: 495-506
        • Reaven G.M.
        • Chen Y.D.
        • Jeppesen J.
        • Maheux P.
        • Krauss R.M.
        Insulin resistance and hyperinsulinemia in individuals with small, dense low density lipoprotein particles.
        J. Clin. Invest. 1993; 92: 141-146
        • Maeda N.
        • Shimomura I.
        • Kishida K.
        • et al.
        Diet-induced insulin resistance in mice locking adiponectin/ACRP30.
        Nat. Med. 2002; 8: 731-737
        • Hotta K.
        • Funahashi T.
        • Bodkin N.L.
        • et al.
        Circulating concentrations of the adipocyte protein adiponectin are decreased in parallel with reduced insulin sensitivity during the progression to type 2 diabetes in rhesus monkeys.
        Diabetes. 2001; 50: 1126-1133
        • Rumpler W.
        • Seale J.
        • Clevidence B.
        Oolong tea increases metabolic rate and fat oxidation in men.
        J. Nutr. 2001; 131: 2848-2852
        • Miyazaki C.
        • Takeuchi M.
        • Yoshitani H.
        • et al.
        Optimum hypoglycemic therapy can improve coronary flow velocity reserve in diabetic patients-demonstration by transthoracic Doppler echocardiography.
        Circ. J. 2003; 67: 945-950